
1

Multiple Anatomical Structure Recognition in Fetal
Ultrasound Images

14016036

Abstract—Ultrasound imaging is heavily dependent on opera-
tor skill - sonographers are trained to recognise key anatomical
features when navigating around the body. This is not too
dissimilar to how convolutional neural networks (CNNs) can be
trained for image classification. Development of a robust and
accurate CNN may assist in identification of difficult bodily
anatomy. In this report we train and optimise a CNN in multiclass
and one vs rest configurations to classify fetal ultrasound images
with 87.81±1.96% accuracy.

I. INTRODUCTION

Ultrasound (US) imaging has become a routine procedure
in both early [1] and late [2] pregnancy to assess healthy fetal
development. Although it does not directly affect perinatal
morbidity [2] it does act as an effective screening tool for
chromosomal abnormalities [3]. Unfortunately, any useful US
screening metrics are heavily dependent on sonographer skill
[4] - particularly worrying as the recent trend in trisomy 21
detection has moved to identifying more challenging markers,
(e.g. the presence/absence of the nasal bone or tricuspid
regurgitation [5]).

Deep learning has the potential to assist sonographers
with identification of fetal anatomy [6], and has even
achieved similar accuracy to said clinical experts [7].
Within deep learning, convolutional neural networks are a
powerful tool for automated image classification. They are
sparsely connected; features are evaluated on the scale of
the convolution kernel rather than the whole image, allowing
for memory and time efficient processing of images with
variable input size [8]. CNNs have been successfully used to
classify a variety of anatomical features in US images, at the
multi-organ scale (e.g. within the abdomen [9]), single-organ
scale (e.g. the thyroid [10]) or even microscale deposits (e.g.
plaque composition in the carotid artery [11]).

In this report we create and optimise a relatively
straightforward CNN able to classify fetal US images
of different anatomical regions, evaluating both a multiclass
and one vs rest variant.

II. METHODS

A. Splitting the Data

Labeled fetal ultrasound images were provided for 266
subjects, and contained four different class labels: the head,
heart, abdomen and other.

Each subject had a different number of frames and a
unique class distribution. To prevent our CNN erroneously

learning to classify based on intra-subject similarities rather
than the actual data in each frame we split our training,
validation and testing datasets based on subject, such that
the model would be evaluated using frames from previously
unseen subjects. The training, validation and testing data
were split along a 70:20:10 ratio. By randomising which
subjects were contained in each split we were able to create
five different dataset permutations for use in cross validation
[12]. The distribution of class labels in each dataset was not
equal, as shown in Figure 1.

Figure 1: Distribution of class labels for the 266 subject.

B. Data Augmentation

Training on unbalanced data can lead to misclassification
problems if not addressed [13]. As such we augmented the
training data using an elastic deformation algorithm [14] such
that each class now contains 7, 500 frames. This method uses
two parameters to control the degree of deformation, α, which
randomly permutes the pixels and σ which applies a Gaussian
convolution for smoothing. We found that setting α = 100 and
σ = 8 produced the most natural deformation (see Figure 2),
this ratio has been used elsewhere for data augmentation of
medical images [14]. We did not augment the validation and
testing datasets as we wanted any frames used for evaluations
to be completely physical.

C. Convolutional Neural Network Architecture

We started by creating a stripped down base CNN
containing only one convolutional max-pooling pair followed
by a relatively small fully connected layer (see Figure 3 and
Table I for the complete architecture.) This basic CNN could
act as a baseline from which we could evaluate any more
complicated models. Our methodology for improving the



2

Table I: A simple base CNN from which we can build more complex models.

Layer Name Input shape Output shape Parameters Kernel num. Kernel size Stride Padding Activation
1 Convol. (92,128) (45,63) 320 32 3 1 Same Relu
2 Max-Pool (45,63) (45,63) 0 - 3 2 Same -
6 Flatten (45,63) (90720) 0 - - - - -
8 Dense (90720) (32) 2903072 - - - - -
9 Softmax (128) (4) 132 - - - - -

(a) An undeformed
ultrasound image of
a fetal head.

(b) Elastic deforma-
tion with α = 34 and
σ = 4

(c) Elastic deforma-
tion with α = 100
and σ = 8

Figure 2: Elastic deformation of an example frame. Using the
parameters provided by Simard et al. produces very irregular
deformation, resulting in the unnatural bending of developing
bone and soft tissue. Using values of α = 100 and σ = 8
produces a more natural deformation.

Figure 3: Architecture of the simple base CNN used as a
baseline for evaluating more complex models.

underlying structure of the base model and optimising any
hyperparameters is described in in the Experiments section.

We made two variants of our optimised model - a multiclass
CNN with a softmax activation function and a one vs rest
CNN with a sigmoid activation function. The one vs rest
CNN has been trained to recognise each class separately,
such that when evaluating a frame it iterates through the four
different models and classifies based on the highest score.

D. Metrics to Monitor

To evaluate the efficacy of our proposed classifiers, testing
accuracy and F1 score was calculated. F1 score was calculated
to supplement accuracy as information on the rate of false
positive and false negative misclassifications is particularly
important in medical imaging. Five-fold cross validation was
used to assess the generalisability of our CNN. To test for
a statistically significant difference between the models we
calculated p-values using a two-tailed t-test.

We also monitored the growth in validation accuracy
during each training epoch to look for overfitting.

E. Visualisation
It can be difficult and unituitive to understand what

occurs during deep learning [15] and so we implemented
a few methods to aid in both understanding our CNN and
visualising the high dimensional data used.

Confusion matrices were created to help identify any
patterns in the misclassification of frames. Using this
information we generated feature maps of a misclassifed
example image. We also used t-SNE dimensionality reduction
to help visualise the high dimensionality data used in this
report [16].

III. EXPERIMENTS

A. Hyperparameter Optimisation
Hyperparameter optimisation is computationally expensive

[17] and as such we searched the literature to identify any
hyperparameter that we could define outright. We decided to
use maximum pooling as it outperforms other subsampling
operations [18] and Relu activation functions due to the
faster training time [19]. We also use the Adam algorithm
for optimisation as it is much faster than stochastic gradient
decent [20]. Inspired by LeNet-5 [21] and AlexNet [19] we
use two convolution-pooling pairs and end with two fully
connected layers.

To optimise our CNN we modify four different parameters:
the convolutional layer kernel size and stride length, the size
of the final fully connected layers and the degree of dropout.
We use a grid search algorithm to iterate over the various
hyperparameter permutations, train a model for each, and
then evaluate. Due to time constraints no cross validation was
performed during this optimisation.

B. Model Evaluation
Having optimised our CNN we trained it for 10 epochs

against the base CNN using the additional datasets for cross
validation. We compare the evolution in validation accuracy
over each epoch and compare the final models accuracy
and F1 score using a t-test. We also plot confusion matrices
to evaluate the most problematic labels and qualitatively
evaluate an example of a misclassified image.

We also train the proposed CNN using the augmented
and non-augmented data to observe the effects of data
augmentation.

Finally we compare multiclass and one vs rest variants
of our CNN. Unfortunately due to time constraints we could
not run cross validation of the one vs rest model.



3

Table II: The proposed final CNN as determined primarily through hyperparameter optimisation.

Layer Name Input shape Output shape Parameters Kernel num. Kernel size Stride Padding Activation

1 Convol. (92,128) (31,43) 320 32 3 3 Same Relu
2 Max-Pool (31,43) (15,21) 0 - 3 2 Same -
3 Convol. (15,21) (15,21) 18496 64 3 1 Same Relu
4 Max-Pool (15,21) (7,10) 0 - 3 2 Same -
5 Dropout (7,10) (7,10) 0 - - - - -
6 Flatten (7,10) (4480) 0 - - - - -
7 Dense (4480) (128) 573568 - - - - -
8 Dense (128) (128) 16512 - - - - -
9 Softmax (128) (4) 516 - - - - -

Figure 4: Architecture of our optimised final CNN.

IV. RESULTS

A. Hyperparameter Optimisation

Table III: Testing accuracies (%) for different hyperparame-
ter permutations without dropout. K=conv. layer kernel size,
S=conv. layer stride and FC=fully connected layer size.

K3S1 K3S3 K7S1 K7S3

FC32 83.45 81.39 84.16 82.10
FC64 84.50 82.73 87.06 83.95
FC128 85.17 86.64 85.84 87.14

Table IV: Testing accuracies (%) for different hyperparameter
permutations with dropout=0.25. K=conv. layer kernel size,
S=conv. layer stride and FC=fully connected layer size.

K3S1 K3S3 K7S1 K7S3

FC32 83.91 82.02 86.30 83.36
FC64 86.93 86.13 85.88 84.83
FC128 86.64 85.88 87.94 87.52

Table V: Testing accuracies (%) for different hyperparameter
permutations with dropout=0.50. K=conv. layer kernel size,
S=conv. layer stride and FC=fully connected layer size

K3S1 K3S3 K7S1 K7S3

FC32 83.07 84.12 84.62 87.82
FC64 85.00 86.85 87.65 87.39
FC128 86.30 88.07 86.85 87.90

As previously mentioned we use a grid search algorithm
to evaluate all 36 possible permutations of the four key

hyperparameters. The results are shown in Tables III, IV and
V.

We find the highest accuracies occur when using a dropout of
0.5, which has a significant effect on limiting overfitting. Our
overall highest test accuracy is found using a convolutional
kernel size of 3, stride of 3, dense layers with 128 neurons
and a dropout of 0.5. We use a learning rate of 0.001 and a
batch size of 24. For a visualisation of this proposed final
CNN and the full architecture see Table II and Figure 4.

B. Base vs Final CNN

As shown Figure 5 the final CNN reaches a higher overall
validation accuracy much faster over the 10 epochs as com-
pared to the the base CNN. The final CNN also has a sta-
tistically significant higher testing accuracy of 87.81±1.96%
against 81.25±3.70% for the simpler base CNN (p<0.05).

C. Impact of Data Augmentation

We note that our proposed model converges to a higher
validation accuracy after 10 epochs when using the augmented
data (see Figure 5). The testing accuracy of the model trained
using augmented data is significantly greater (p<0.05) at
87.81±1.96% as compared to the same model trained on non-
augmented data (85.37±1.02%).

D. Multiclass v One vs Rest

The one vs rest CNN was substantially more computation-
ally expensive; we did not have time to train it on the cross
validation data and as such we cannot determine statistical



4

Figure 5: Change in validation accuracy per epoch for the final
CNN trained with and without augmented data and the base
CNN with augmented data.

significance. We have provided the code to do so however. For
the single model we do train we find a slightly lower testing
accuracy from the one vs rest model (86.5%). F1 scores were
also very similar, with the multiclass scoring 82.34±4.23%
and the one vs rest getting 83.2%.

E. Misclassification

To identify which labels were most commonly misclassified
we calculated the confusion matrices for both the multiclass
and one vs rest models (both matrices were similar, and so
only the multiclass model is shown in Figure 6).

Figure 6: Confusion matrix for the multiclass final CNN
trained on augmented data.

Class 1 (heart) and class 2 (abdomen) were the most
incorrectly classified classes. In Figure 7 we show an
example of a frame from class 1 that was classified as class
2, and the resulting feature map of the image.

A similar pattern can also be observed using t-SNE to
visualise our data (see Figure 8). The heart and abdomen are
close together and may easily be misclassified. The abdomen
class is grouped into two main clusters which may make it
particularly hard to classify. It is unsurprising that these two
classes also have the least amount of data (Figure 1).

(a) Fetal heart US image. (b) Feature map of the image.

Figure 7: An example of a misclassified image - this frame
of the fetal heart was classified as the abdomen. Feature maps
are generated for the final multiclass CNN.

Figure 8: Using t-SNE to visualise high dimensionality data.

V. CONCLUSION

Both our multiclass and one vs rest final CNN achieved
testing accuracies significantly higher than the base CNN
model. However, the one vs rest CNN has a few significant
drawbacks - it is much more computationally expensive
to train meaning we were unable to finish training cross
validation models. Most importantly, even though we have
generated a balanced dataset, the binary nature of one vs rest
classification means that there are far more negative labels
than positive [22] (for example, when training to recognise
class 0, the negative frames are classes 1,2 and 3 combined).
One vs rest classifiers are most useful in situations where
a frame could potentially belong to multiple classes (e.g. a
frame of the heart can belong to the heart class, the organ
class and the thorax class), as softmax cannot be used in
these situations.

Possible improvements to our methodology include using a
random search algorithm with cross validation to speed up
hyperparameter optimisation [23]. A more aggressive data
augmentation strategy including left-right flips and removal
of random chunks of image data may make the CNN more
robust and further reduce overfitting.



5

REFERENCES

[1] M. Whitworth, L. Bricker, and C. Mullan, “Ultrasound for fetal assessment in early pregnancy,” Cochrane database of systematic reviews, no. 7, 2015.
[2] L. Bricker and J. P. Neilson, “Routine ultrasound in late pregnancy (after 24 weeks’ gestation),” Cochrane database of systematic reviews, no. 2, 2007.
[3] K. H. Nicolaides, G. Azar, D. Byrne, C. Mansur, and K. Marks, “Fetal nuchal translucency: ultrasound screening for chromosomal defects in first

trimester of pregnancy.” Bmj, vol. 304, no. 6831, pp. 867–869, 1992.
[4] J. Siemer, N. Egger, N. Hart, B. Meurer, A. Müller, O. Dathe, T. Goecke, and R. Schild, “Fetal weight estimation by ultrasound: comparison of 11

different formulae and examiners with differing skill levels,” Ultraschall in der Medizin-European Journal of Ultrasound, vol. 29, no. 02, pp. 159–164,
2008.

[5] K. Nicolaides, K. Spencer, K. Avgidou, S. Faiola, and O. Falcon, “Multicenter study of first-trimester screening for trisomy 21 in 75 821 pregnancies:
results and estimation of the potential impact of individual risk-orientated two-stage first-trimester screening,” Ultrasound in Obstetrics and Gynecology:
The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, vol. 25, no. 3, pp. 221–226, 2005.

[6] Q. Huang, F. Zhang, and X. Li, “Machine learning in ultrasound computer-aided diagnostic systems: a survey,” BioMed research international, vol.
2018, 2018.

[7] B. Rahmatullah, A. T. Papageorghiou, and J. A. Noble, “Image analysis using machine learning: Anatomical landmarks detection in fetal ultrasound
images,” in 2012 IEEE 36th Annual Computer Software and Applications Conference. IEEE, 2012, pp. 354–355.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[9] P. M. Cheng and H. S. Malhi, “Transfer learning with convolutional neural networks for classification of abdominal ultrasound images,” Journal of

digital imaging, vol. 30, no. 2, pp. 234–243, 2017.
[10] J. Chi, E. Walia, P. Babyn, J. Wang, G. Groot, and M. Eramian, “Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional

neural network,” Journal of digital imaging, vol. 30, no. 4, pp. 477–486, 2017.
[11] K. Lekadir, A. Galimzianova, À. Betriu, M. del Mar Vila, L. Igual, D. L. Rubin, E. Fernández, P. Radeva, and S. Napel, “A convolutional neural network

for automatic characterization of plaque composition in carotid ultrasound,” IEEE journal of biomedical and health informatics, vol. 21, no. 1, pp. 48–55,
2016.

[12] C. Schaffer, “Selecting a classification method by cross-validation,” Machine Learning, vol. 13, no. 1, pp. 135–143, 1993.
[13] B. Krawczyk, “Learning from imbalanced data: open challenges and future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp. 221–232,

2016.
[14] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for convolutional neural networks applied to visual document analysis.”
[15] D. Castelvecchi, “Can we open the black box of ai?” Nature News, vol. 538, no. 7623, p. 20, 2016.
[16] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.
[17] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,” in Advances in neural information processing

systems, 2011, pp. 2546–2554.
[18] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional architectures for object recognition,” in International conference

on artificial neural networks. Springer, 2010, pp. 92–101.
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information

processing systems, 2012, pp. 1097–1105.
[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.
[22] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.
[23] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal of machine learning research, vol. 13, no. Feb, pp. 281–305,

2012.


