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Modelling the Relationship Between Structural and
Functional Connectomes
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Abstract—The structural and functional intraconnectivity of
the human brain is determined indirectly, leading to significant
uncertainty and limiting the adoption of connectomics when
researching various neurological disease states. Furthermore,
even though a structural white matter connection is needed
for distinct brain regions to functionally communicate,
direct measurement of either connectome does not produce
complimentary results.

In this report we evaluate various proposed linear models
capable of linking the structural and functional connectome.
We propose a model that incorporates second and third order
indirect connectivity to allow functional data to be predicted at
edges where no direct structural connection exists.

I. INTRODUCTION

For over a century it has been understood that the human
cerebral cortex can be subdivided into various regions [1],
with each region being delineated by differences in cellular
composition or histological architecture [2]. These distinct
cortical domains vary in neuronal activity for a given task -
for example the primary visual cortex becomes more active
during pattern recognition tasks [3] while the primary motor
cortex activates during voluntary motion [4]. Note that these
regions do not act in isolation - for example, during object
observation tasks both aforementioned cortical areas are
active simultaneously [5], [6]. This suggests that neural
connections can link different cortical regions - a map of
these connections is known as a connectome [7].

There are two different varieties of connectome - structural
and functional. Structural connections are the physical
white matter links between cortical regions and a structural
connectome of the human brain can be generated using
tractography. Diffusion weighted MRI (DW-MRI) is used
to generate a complete map of fibre orientation throughout
the brain: the anisotropic nature of white matter leads to
a greater diffusion of water molecules along the neuronal
tracks than across them [8], which can be directly measured
with DW-MRI. A diffusion tensor can then be calculated
for each voxel, the largest eigenvalue of which corresponds
to the most probable orientation of white matter fibres [9].
Alignment of the diffusion tensor’s eigenvectors can identify
white matter tracts.

This diffusion tensor approach to tractography has significant
disadvantages. Isotropic brain matter regions such as the
cerebrospinal fluid filled ventricles do not produce strongly
directional diffusion [10]. We can apply a fractional anisotropy
(FA) threshold to ensure only strongly anisotropic regions

of brain are used to generate a structural connectome [11],
where fractional anisotropy is a metric that measures the
degree of anisotropic diffusion:

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ21 + λ22 + λ23
(1)

with λ1, λ2 and λ3 being the eigenvalues of the diffusion
tensor.

Another issue with the simple diffusion tensor model is
the inability to resolve crossing white matter fibers [12], a
significant problem as the proportion of white matter in the
human brain containing crossed fibers can be as high as 90%
[13]. Various approaches circumvent this issue and allow
resolution of multiple distinct fiber orientations within a given
voxel [14], these include q-ball imaging [15], constrained
spherical deconvolution [16] or a multicompartment approach,
such as the ball and stick model [17]. These more complex
fiber models allow researchers to determine the structural
connectome using probabilistic, rather than deterministic,
tractography. Probabilistic tractography helps account for the
uncertainty inherent in fiber estimation.

The other type of connectome - the functional connectome
- describes the “functional interplay between different
regions of the brain” [18]. It is determined by resting
state functional MRI (rsfMRI). Changes in cerebral blood
oxygenation produce a varying blood oxygen level dependent
(BOLD) signal which can then be detected in various
cortical regions [18]. The signal similarity between different
cortical regions is a covariance matrix that can then be
determined using the shrinkage approach [19]. The shrinkage
approach is a computationally efficient method to estimate
covariance matrices that reduces the effect of outliers using a
regularization parameter, λ [19].

Having generated the functional connectome a decision
must be made on whether to keep or discard the data
corresponding to negative connectivity [20]. Negative
functional connectivity (NFC) represents an anticorrelated
BOLD signal between two cerebral regions [21], and its
origin has been the subject of significant debate [22]. We
know NFC is not an artefact of any signal preprocessing or
noise cancellation [23], but instead may be caused by an
accumulated phased delay between different brain regions
[22], or by the brain’s organisation into distinct task-positive
and task-negative networks [24].

Structural and functional connectivity are fundamentally
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coupled - a physical neuronal connection must exist between
any two cortical regions to allow for functional communication
[25]. As both DW-MRI and rsfMRI are indirect measures
of connectivity there is not a one-to-one mapping of the
structural and functional connectome, instead a unifying
model is needed [26].

When creating models to link the structural and functional
connectome it is important to distinguish between direct and
indirect connectivity. Regions in the cerebral cortex exhibit a
“small-world” topology [27]. This means that each region is
not connected to all other regions but instead expresses strong
local connectivity or clustering, with particular nodes linking
each cluster to each other (see Figure 1), ultimately meaning
most nodes are only indirectly connected to the others.

Figure 1: “Small-world” graph topology used to describe brain
connectivity. Image taken from Watts and Strogatz [28].

A variety of brain connectivity metrics can be used to
quantify the interconnectivity of the generated connectomes.
We focus on four key metrics: edge density, global efficiency,
mean shortest path length and clustering. The terms edge
(E) and node (N ) are frequently used in the study of
brain connectivity, a node represents a cerebral region of
interest and a edge represents either a structural or functional
connection between nodes.

Edge density is a direct measure of the total connectivity of a
brain network, representing the number of node connections
against all potential connections [29] (see Equation 2).
Recall that human brains are not fully connected and follow
a “small-world” topology, as such typical values of edge
density range between 10-30% [30].

Edge density =
E

N(N − 1)
(2)

Global efficiency and mean shortest path length are both
measures of integration - they both essentially measure how
many edges connect any two given nodes [31]. To be more
specific, the global efficiency is defined as [32]:

Global efficiency =
1

N(N − 1)

∑
i 6=j

1

Li,j
(3)

where Li,j is the length of the shortest path between nodes
i and j [30]. The mean characteristic path length is just the

inverse of the global efficiency and is defined as [28]:

Mean shortest path length =
1

N(N − 1)

∑
i 6=j

Li,j (4)

While two different brain networks may have the same
edge density, differences in topology may result in unique
efficiency and mean shortest path lengths (see Figure 2).

Figure 2: Two example brain networks with identical density
but different efficiencies and mean shortest path lengths.
Network A has a higher efficiency and lower mean shortest
path length as on average less edges have to be crossed to
reach any other node. Image taken from Clayden [33].

The final metric, the clustering coefficient, is a measure
of segregation - it quantifies whether network nodes are
separated into clusters or if good connectivity exists
throughout the entirety of the brain. The global clustering
coefficient is the average of all local clustering coefficients
[30], which is determined by the number of triangular
connections about a node (ti) relative to the nuber of edges
attached to that node (ki) [34]:

Global clustering coefficient =
1

N

∑ 2ti
ki(ki − 1)

(5)

In this report we start by evaluating the effect a fractional
anisotropy threshold has on generating a structural connectome
using various brain connectivity metrics. We then analyse
the effectiveness of modifying λ when using the shrinkage
method to generate functional connectivity maps, noting the
effect of retaining or discarding negative correlations. Having
done this we evaluate various linear models using data from
multiple subjects, exploring various different methods of
fitting the models to connectivity maps (across individual
edges or whole subjects). We end by investigating the use of
LASSO regularisation for model fitting.

II. METHODS

To evaluate the effect of thresholding fractional anisotropy,
structural connectomes were generated from DW-MRI
imaging data taken of a single healthy adult. Throughout this
report the human cortex was segmented into the 68 labeled
regions listed in the appendix (Table V). The R package
TractoR [35] was used to generate binary undirected structural
connectivity maps using 10,000 streamlines, if any streamline
linked two cortical regions they were considered connected.
A FA threshold was used to control where the seed could
originate - ultimately eight different structural connectivity
maps were generated with unique FA thresholds between 0.1
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(a) FA = 0.1 (b) FA = 0.2 (c) FA = 0.3 (d) FA = 0.4 (e) FA = 0.5 (f) FA = 0.6 (g) FA = 0.7 (h) FA = 0.8

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 3: Generating binary undirected structural connectivity maps using different fractional anisotropy thresholds. Subfigures
(a) to (h) show an axial thresholded FA map of the subject. During tractography seeds are able to originate in the shown areas.
Subfigures (i) to (p) show the binary connectome. Blue = no streamline connects the two given regions while yellow = at least
one does.

and 0.8 with increments of 0.1. The four aforementioned
brain connectivity metrics were then calculated on these maps
using the brain connectivity toolbox [34].

To generate functional connectivity maps we used rsfMRI
data taken from the same subject. A modified shrinkage
algorithm was used to estimate the resulting covariance
matrix [19]. We varied the value of the shrinkage parameter,
λ, to observe what effect regularisation would have on the
connectome - we quantified this by binarizing the connectivity
map with a cut-off of 0.1 and calculating brain connectivity
metrics. We either kept or discarded edges with negative
functional connectivity and evaluated the effect of doing so
with the same four metrics.

We then use structural and functional data taken from
19 subjects to evaluate various linear models that link
structural and functional data. Due to the “small-world”
topology of brain networks, functional connectivity (fij)
cannot be explained by purely direct structural connectivity
(sij) so we define the indirect structural connectivity matrix
(tij), which is representative of two nodes being connected
along exactly two edges, as nodes 1 and 2 are connected
in Figure 2a. Stated more formally the indirect strucural
connectivity map, tij , consists of the greatest minimum
weight in all available two-step chains:

tij = maxk{min{sik, skj}}s.t.sik, skj 6= 0. (6)

We evaluate the following five linear models:

1.fij = αij + βijsij

2.fij = αij + βijsij + γijs
2
ij

3.fij = αij + βijtij

4.fij = αij + βijtij + γijt
2
ij

5.fij = αij + βijsij + γijtij

(7)

Where αij , βij and γij are the parameters for the linear model.

Cortical regions can be connected indirectly through
more than two edges (e.g. nodes 1 and 6 in Figure 2) and so
we propose a new linear model that incorperates second order
indirect connectivity [36], uij , which is now defined as the
greatest minimum weight in all available three-step chains:

fij = αij + βijsij + γijt
2
ij + δiju

3
ij (8)

As the uncertainty of linking nodes increases with the number
of edges crossed we square and cube the higher order indirect
connectivity terms so they have a diminished impact on
predicting the functional connectome.

We preform leave-one-out cross-validation to evaluate
each linear model, and comparison between each model is
aided by calculations of the Akaike information criterion
(AIC) and Bayesian information criterion (BIC). We run these
tests on the edges containing data from all models, as many
edges have no functional data due to an absence of strucural
data. We also determine the structural connectivity density for
each vertex for the direct and two/three step connectivity maps.

We fit the linear models in three different ways: across
each edge independently, across every subject, and using
each subject independently. We end by replacing our ordinary
least squares method of model fitting with a more advanced
LASSO based technique [37].

LASSO improves the predictive accuracy of a linear model
by penalising potentially erroneous non-zero parameters using
`1 regularisation and is defined as [38]:

β̂k = argminβ

(
1

2
||Y − βX||2 + λ||β||1

)
(9)

The value of λ controls the degree of regularisation and must
be carefully chosen, usually using extensive cross-validation.
Unfortunately, this was not possible due to computational
constraints and so a value of λ = 0.015 was chosen from
relevant literature [38].
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III. RESULTS

The top row of Figure 3 shows what the thresholded
fractional anisotropy maps look like through an arbitrary
axial plane. These thresholded maps control where the 10,000
seeds for tractography can originate, producing the binary
structural connectivity maps shown in the bottom row. We
can now calculate the four brain connectivity metrics on these
generated connectomes - the results are shown in Figure 4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FA Threshold

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

E
d

g
e

 D
e

n
s
it
y

(a) Density

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FA Threshold

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45
E

ff
ic

ie
n
c
y

(b) Efficiency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FA Threshold

2.6

2.8

3

3.2

3.4

3.6

3.8

M
e

a
n

 S
h

o
rt

e
s
t 

P
a

th
 L

e
n

g
th

(c) Path

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FA Threshold

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

C
lu

s
te

ri
n

g

(d) Clustering

Figure 4: Edge density, efficiency, mean characteristic path
length and clustering calculated for the structural connectivity
maps found in Figure 3.

Using the shrinkage approach we were able to generate
maps of structural connectivity from rsfMRI timecourse
data measured in different brain regions (see Figure 5).
We varied the shrinkage parameter, λ, to generate eight
distinct connectomes. Note that some edges have a negative
functional connectivity. We binarised these weighted
functional connectivity maps using a value of 0.1, either
keeping or discarding negative edges (see Figure 6). We are
then able to calculate the same brain connectivity metrics
when negative edges are retained or discarded, which we plot
in Figure 7.

Confident in how maps of structural and funcctional
connectivity are generated we can now move on to evaluating
the various linear models. We start by fitting independently
across each edge and comparing the generated functional
connectome to one directly measured using rsfMRI for each
subject. These results are plotted in Figure 9. We then go
on to determine the AIC and BIC scores, and the residual
sum of squares (RSS) for each model using leave-one-out
cross-validation. These results are shown in Table I.

We also fit the linear model using a single set of coefficients
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Figure 5: Functional connectivity maps generated using the
shrinkage approach [19] for different values of the shrinkage
parameter, λ. Note the presence of negative functional con-
nectivity where some edges have a connectivity bellow zero.

Table I: AIC, BIC and RSS as determined by model fitting
across each edge independently.

Model AIC BIC RSS

1) fij = αij + βijsij -105.63 -102.80 0.0460
2) fij = αij + βijsij + γijs

2
ij -104.81 -101.03 0.0432

3) fij = αij + βijtij -105.55 -102.72 0.0462
4) fij = αij + βijtij + γijt

2
ij -104.82 -101.04 0.0433

5) fij = αij + βijsij + γijtij -104.88 -101.10 0.0431

for all edges. The data can be found in Table II.
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(a) Without negative edges.
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(b) Without negative edges.

Figure 6: Binary connectivity maps generated from the
weighted functional connectome in Figure 5 using a threshold
of 0.1. Negative edges were either kept or discarded.
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Figure 7: Edge density, efficiency, mean characteristic path
length and clustering calculated from binarising functional
connectivity maps found in Figure 5. Negative edges are either
kept or discarded.

The direct (sij) and indirect (tij) structural connectivity
maps are showin in Figure 8. We also show the three-step

Table II: AIC, BIC and RSS as determined by model fitting
across all edges simultaneously.

Model AIC BIC RSS

1) fij = αij + βijsij -101.15 -98.32 0.1553
2) fij = αij + βijsij + γijs

2
ij -99.13 -95.35 0.1567

3) fij = αij + βijtij -101.13 -98.30 0.1572
4) fij = αij + βijtij + γijt

2
ij -99.11 -95.34 0.1571

5) fij = αij + βijsij + γijtij -99.14 -95.36 0.1512

indirect strucural connectivity map (uij) used for our proposed
sixth model (Equation 8). Having generated sij , tij and uij
for each subject we are able to calculate the AIC, BIC and
RSS, finding the AIC to be -104.01, the BIC to be -99.28
and the RSS to be 0.0405 - the lowest recorded RSS score of
all the models.

A plot of structural connectivity density (generated by
summing structural connectivity data across each vertex for
all 19 subjects) has beenn created in Figure 10.

To highlight the danger of overfitting we now generate
models using only one subject, evaluating the fitted model
against all other subjects. This process can be thought of as
leave-p-out cross validation where p = num. of subjects − 1.
The results can be found in Table III.

Table III: AIC, BIC and RSS as determined by model fitting
across all edges simultaneously. Only one subject was used to
fit the model.

Model AIC BIC RSS

1) fij = αij + βijsij -41.86 -43.87 1.672
2) fij = αij + βijsij + γijs

2
ij -40.01 -42.00 1.645

3) fij = αij + βijtij -42.12 -43.48 1.666
4) fij = αij + βijtij + γijt

2
ij -40.37 -41.78 1.679

5) fij = αij + βijsij + γijtij -41.86 -41.61 1.599

To research the impact of regularisation we end by fitting all
six proposed linear models on a per edge basis using LASSO
regularisation and λ = 0.0015. The results are shown below
in Table IV.

Table IV: AIC, BIC and RSS as determined by model fitting
across each edge independently using LASSO with λ =
0.0015

Model AIC BIC RSS

1) fij = αij + βijsij -102.65 -98.32 0.1523
2) fij = αij + βijsij + γijs

2
ij -101.30 -95.35 0.1521

3) fij = αij + βijtij -101.98 -98.30 0.1523
4) fij = αij + βijtij + γijt

2
ij -99.14 -95.34 0.1527

5) fij = αij + βijsij + γijtij -99.44 -95.36 0.1510
6) fij = αij + βijsij + γijt

2
ij + δiju

3
ij -102.45 -97.40 0.1495

IV. DISCUSSION

The motivation behind FA thresholding during tractography
is so that seeds start in voxels with clearly distinguishable
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Figure 8: Structural connectivity maps showing directly connected nodes and indirectly connected nodes, with either two or
three connecting edges.
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Figure 9: Functional connectivity maps generated by fitting the
five linear models to direct and indirect structural connectivity
maps. The connectome in the top left shows the ground truth
determined using rsfMRI.

white matter tracts [39]. The low FA regions that are masked
out often have no white matter entirely (like the ventricles)
meaning that any streamline originating in such regions is
highly likely to be unreliable.

We can immediately observe from Figure 3 that FA
thresholding has a significant impact on the resultant
connectivity map - with the structural connectome ultimately
becoming sparser as the FA threshold increases. This
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Figure 10: Structural connectivity density created by summing
connectivity data across each vertex for all 19 subjects. Error
bars signify standard deviation.

observation is supported by Figure 4a which shows a fourfold
drop in edge density as the FA threshold grows.

Further conclusion can be drawn from Figure 4 - the
efficiency trends down and the mean shortest path length
trends up as the FA threshold increases (recall that these
values are just the inverse of eachother). Intuitively this seems
sensible, the rising FA threshold severs potential connections,
such that on average a more roundabout path must be taken
to link two nodes. However, note the significant inversion
that occurs when FA = 0.8. This arises at very high levels of
thresholding as different brain regions are completely cut off
from eachother, and consequently have an infinite path length
that does not get factored into the calculation of efficiency or
mean shortest path length. In effect, we our now measuring
path length in many small, isolated clusters rather than the
entire brain, and the path length between any two nodes in
the same cluster is on average much shorter.

Figure 4d shows a decrease in the clustering coefficient
as the FA threshold rises. This metric quantifies clustering
as the number of triangular connections about a node. As
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the thresholding increases these triangles are broken apart as
edges are masked out.

When using the shrinkage method to create functional
connectivity maps selection of the shrinkage parameter, λ,
has a significant impact on the generated connectome (see
Figure 5). λ is a regularization parameter, and has the effect
of pulling all model weights towards zero. Some degree of
regularization is important to reduce the impact of outliers or
inter-patient variability, but too much and the underlying data
is eroded, which we can see when looking at the binarised
connectivity maps (Figure 7).

Unsurprisingly, Figure 5 demonstrates that ignoring negative
functional connectivity results in a much sparser connectome
(see Figure 5). The same general trend with the brain
connectivity metrics can be observed across Figure 7 -
density decreases, although the extra negative edges produce
a denser connectome at all values of λ. Efficiency falls and
mean shortest path length rises, the negative edges allow for
more possible connections between any two nodes, resulting
in shorter routes on average, explaining the differences
between connectomes generated with and without negative
functional connectivity. The inversion in the clustering
coefficient showing in Figure 7d is surprising. It may be
explained by considering that the global clustering coefficient
is the average of the local clustering about each node, as
λ increases some nodal connections are completely severed
such that they would no longer factor into the global average.

Ultimately, it may be more beneficial to consider the
negative functional connectivity separate from the remaining
functional connectome. This approach considers the “task-
positive” and “task-negative” regions as separate networks
[24] - such a technique has been used to study depression
[40], dementia [41] and schizophrenia [42].

We now move onto the second part of the report - fitting and
evaluating the various linear models against the data from
the 19 subjects. In Figure 8 we give an example of the direct
and indirect (both by 2 or 3 edges) structural connectivity
maps that are generated for each subject. As expected, the
direct connectivity map is the most sparse, the “small-world”
theory explaining that any two nodes are most likely not
actually directly connected, but instead are linked via multiple
edges. We can observe this when looking at the indirect two
and three-steps maps, which get progressively more well
connected, and for the subject in Figure 8 no cortical region
remains unconnected with fewer than three edges.

Using Figure 8 it is easy to see how structural and
functional connectomes can be used as a research (or even
diagnostic) aid for various neurological pathologies. An
aberrantly connected brain region has been observed in those
with depression [43], autism [37] or Alzheimer’s disease [44].

Figure 9 demonstrates the downside of relying wholly
on direct structural connectivity to determine the functional

connectome - functional connectivity cannot be determined
at edges without corresponding structural data, which is the
majority of the brain. The greatest advantage to incorporating
indirect connectivity data into a linear model is that more
nodes are indirectly connected and so more functional data
can ultimately be predicted. However, as we increase the
order of indirect connectivity the uncertainty compounds
as the number of edges increase, and local connectivity
information is lost. Ultimately, we want some degree of
indirect connectivity so that functional data can be generated
on all edges, but the main contribution to the linear model
should come from the direct connectivity maps. Our proposed
linear model (Equation 8) does this by ramping up the power
of higher order indirect connectivity terms such that their
overall impact on the model is limited in cases where direct
data exists.

To help visualise the progressive loss in useful information
as the degree of indirect connectivity increases we plot
Figure 10 - the structural connectivity density of the direct
and indirect (two and three step) data. For all vertices the
direct connection density was lower, which makes intuitive
sense as there are less directly connected nodes. You also
have the largest variability in density across each vertex,
large data contrasts like this are critical to draw reliable
conclusions from data. As we move to indirect data and the
order increases we notice that the density converges towards
a uniorm value of ≈28, with only a few poorly connected
regions retaining a lower connectivity.

Unsurprisingly, fitting the linear models using data from
only one subject produces the worse results. Even though
Figure 10 shows us that connectivity trends can be drawn
over an entire vertex (e.g. region x typically has more direct
connections than region y), the intersubject variability is
great enough that the predictive power of the linear models
is greatly reduced (see Table III).

LASSO regularisation is one way to reduce the impact
of subject variability during model fitting by reducing the
effect of outliers through `1 regularisation. As we can see
from Table IV, replacing the simple ordinary least squares
approach with LASSO regularisation produces the models
with the lowest AIC, BIC and RSS scores. The disadvantages
to using LASSO include the need for careful selection of λ
through cross-validation, something that was not possible in
this report due to computational constraints.

V. CONCLUSIONS

Creating a link between structural and functional
connectivity is a promising method to overcome the
limitations that arise with direct measurement of the
structural and functional connectome.

In this report we experiment with controlling the FA
threshold and λ, key parameters in generating connectivity
maps. We evaluate six linear models, using the AIC, BIC
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and RSS scores for comparison. We find using a model that
combines direct, and two+three stage functional connectivity
produces the best fit. We also note that LASSO regularisation
produces a significantly better fit than ordinary least squares.
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APPENDIX

Table V: The cortical segmentation used in this report.

Label Region
1 banks superior temporal sulcus left
2 caudal anterior cingulate cortex left
3 caudal middle frontal gyrus left
4 cuneus left
5 entorhinal cortex left
6 fusiform gyrus left
7 inferior parietal gyrus left
8 inferior temporal gyrus left
9 cingulate gyrus isthmus left
10 lateral occipital cortex left
11 lateral orbitofrontal cortex left
12 lingual gyrus left
13 medial orbitofrontal gyrus left
14 middle temporal gyrus left
15 parahippocampal gyrus left
16 paracentral gyrus left
17 inferior frontal gyrus pars opercularis left
18 inferior frontal gyrus pars orbitalis left
19 inferior frontal gyrus pars triangularis left
20 pericalcarine cortex left
21 postcentral gyrus left
22 posterior cingulate gyrus left
23 precentral gyrus left
24 precuneus left
25 rostral anterior cingulate cortex left
26 rostral middle frontal gyrus left
27 superior frontal gyrus left
28 superior parietal gyrus left
29 superior temporal gyrus left
30 supramarginal gyrus left
31 frontal pole left
32 temporal pole left
33 transverse temporal gyrus left
34 insula left
35 banks superior temporal sulcus right
36 caudal anterior cingulate cortex right
37 caudal middle frontal gyrus right
38 cuneus right
39 entorhinal cortex right
40 fusiform gyrus right
41 inferior parietal gyrus right
42 inferior temporal gyrus right
43 cingulate gyrus isthmus right
44 lateral occipital cortex right
45 lateral orbitofrontal cortex right
46 lingual gyrus right
47 medial orbitofrontal gyrus right
48 middle temporal gyrus right
49 parahippocampal gyrus right
50 paracentral gyrus right
51 inferior frontal gyrus pars opercularis right
52 inferior frontal gyrus pars orbitalis right
53 inferior frontal gyrus pars triangularis right
54 pericalcarine cortex right
55 postcentral gyrus right
56 posterior cingulate gyrus right
57 precentral gyrus right
58 precuneus right
59 rostral anterior cingulate cortex right
60 rostral middle frontal gyrus right
61 superior frontal gyrus right
62 superior parietal gyrus right
63 superior temporal gyrus right
64 supramarginal gyrus right
65 frontal pole right
66 temporal pole right
67 transverse temporal gyrus right
68 insula right


