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Conclusions

1. WEFS has the potential to enhance the depth of
optical imaging modalities.

2. Computational models can augment research
of WFES by allowing for the measurement of
internal fields and phase.

3. We have presented and validated a physically
realistic yet computationally efficient model of
WEFS. The model has replicated existing WFS
research and is being exploited to investigate
the shaping of light into biological tissue.

Happy to answer any questions you have.
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