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Physics of light propagation and in vivo implications

Significance of scattering & absorption Models of elastic scattering

Jacques, Steven L., Physics in Medicine & Biology, 2013 Jacques, Steven L., Physics in Medicine & Biology, 2013

Scattering can be 

modelled with Mie theory
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Physics of light propagation and in vivo implications

Tissue is a strong scatterer WFS has the potential to increase depth

Highly inhomogeneous refractive 

index = highly scattering medium

Gigan, Sylvain., Nature Photonics, 2017
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Wavefront shaping – principle and applications

TEXT

Incident 

unoptimized light 

is scattered

Shaped light 

constructively interferes 

and can produce a focus

SLM optimizes incident light

What is wavefront shaping? Experimental approach to 

wavefront shapingSpatially modulating light to construct arbitrary fields

Scattering medium

Feedback

Vellekoop and Mosk, Optics letters, 2007

Experimentally shaping 

through scattering media
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Wavefront shaping – principle and applications

Optical foci have been generated through very deep domains

This is how WFS may increase the depth and resolution of optical imaging.

Shen, Yuecheng, et al., Journal of biomedical optics, 2016
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• Number of elements

• Experimental design
Domain considerations?

• Phantom design

• Validation

• Controlling decorrelation

Feedback limitations?

• Feedback required

• No internal fields

• Limited FOV

• Measuring phase

Computational methods are useful to 

investigate wavefront shaping

Let's consider an 

experiment shaping light 

inside scattering media
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Full-wave modelling of WFS Ansatz modelling of WFS

Kim, Jong Uk, et al., Biomedical Optics Express, 2018 Efficient, full-wave, computational methods 

are useful to investigate wavefront shaping
Fine mesh needed 

for small geometry

Modelled WFS 

for OCT
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governing light propagation.
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TEXT

1. Constructing our model – how do we simulate WFS?

2. Validating our model – is our model accurate?

3. Focusing through titanium dioxide phantoms – can we simulate WFS?

4. Exploiting our model – what is special about our model?

We present a physically realistic and efficient method of 

modelling wavefront shaping (WFS) through scattering media.
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The Mie theory can be used to model 

light scattering in tissue

This is the discrete particle model

Jacques, Steven L., Physics in Medicine & Biology, 2013

Scatterer refractive index, size and density define bulk 

optical properties

Constructing our model:
The discrete particle model of scattering media
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Simulating discrete particle domains Scaling of the T-matrix method

Egel, Amos, et al., 

Journal of Quantitative 
Spectroscopy..., 2019

• T-matrix is an extension of Mie 

theory to multi-sphere domains

• Total field is the sum of the 

scattered fields from each 

individual sphere.

Efficient as no need to mesh space between spheres

Same domain: FDTD (~4 hrs), T-matrix (10 mins)

Constructing our model:
The T-matrix method – theory and peculiarities

What you see is what you get:

Physically realistic modelling of 

the same domains an 

experimentalist might use
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1. Use Mie theory to design discrete particle domain.

2. Use the T-matrix method to simulate the propagation 

of light through said domain.

3. G

4. M

Generate new input mode by 

simulating propagation from a 

difference incident angle.

Modulate these 

input modes to 

shape light 

through the 

medium

1st input mode
2nd input mode

Scattering medium

Constructing a titanium dioxide domain

• Consider replicating Vellekoop and Mosk

• Use Mie theory to generate a highly scattering TiO2 

phantom (transport mean free path of ~5µm-1).

• Simulate propagation of plane waves incident 

at various angles (-10-10° polar and azimuthal).

• Stepwise sequential algorithm used to spatially 

modulate light.

Vellekoop and Mosk, Optics letters, 2007

Constructing our model:
Simulating wavefront shaping
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Numerical validation (Mie theory + FDTD) Domain validation (Inverse Adding-Doubling)

• Constructed

30 sphere 

scaled down 

domain and 

compared 

simulated 

field against 

FDTD.

• Compared single sphere fields against Mie theory to 

validate numerical implementation of T-matrix.
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Scattered field Total field

IAD can be used to 

independently 

measure the optical 

properties of a 

domain.

Measurements of transmittance 

and reflectance were taken by 

simulating the propagation of a 

Gaussian beam through 

scattering domains.

For all domains, IAD 

derived scattering 

coefficients and 

anisotropies matched

theory (<3% error).
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Focusing through titanium dioxide phantoms

Using iterative phase modulation to focus through TiO2 (can we model WFS?)

Vellekoop and Mosk, Optics letters, 2007

TiO2 phantom

Target

Direction 

of light

Phase of 441 different input modes 

optimized to generate an optical focus.

Our model is able to simulate WFS 

through highly scattering media

Replicating original 

Vellekoop and Mosk 

demonstration by 

focusing through TiO2



Focusing through titanium dioxide phantoms

Enhancement vs elements

Enhancement is 

defined as the intensity 

of the optimized focus 

to the average 
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Focusing through titanium dioxide phantoms

Enhancement vs elements Multiple foci

Enhancement is 

defined as the intensity 

of the optimized focus 

to the average 

intensity of the 

unoptimized speckle

We find that our 

simulation of 

enhancement vs 

number of input modes 

scales with theory:

Our method is capable of generating arbitrary fields, 

as shown above
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3D & internal focusing
• Computational models can be used to 

evaluate the field at arbitrary locations.

• Below is a 3D focus optimized to 

generate inside the TiO2 domain.



Exploiting wavefront shaping models

3D & internal focusing Scattering through tissue-like media

Biological tissue can be 

modelled using discrete 

particle domains.

We have simulated light 

propagation through ~mm 

scale biological tissue.

• Computational models can be used to 

evaluate the field at arbitrary locations.

• Below is a 3D focus optimized to 

generate inside the TiO2 domain.
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|E|Measuring the angular 

memory effect range
Enhancement vs focus size

Modelling the angular range of 

an optimized focus

Ansatz methods have 

struggled to model 

coherent phenomena 

(e.g. memory correlations)
.

Some methods exploit 

these correlations to focus 

light into scattering media.

Relationship between enhancement 

and focus size important for 

photoacoustic wavefront shaping

Imaging FOV could be increased 

by exploiting memory correlations 

to translate already optimized foci.
.

Focusing might also be able to be 

accelerated by exploiting priors 

(e.g. sharing phase maps between 

input modes).

Exploiting wavefront shaping models
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Conclusions

TiO2 phantom

Target

Direction 

of light

1. WFS has the potential to enhance the depth 

and resolution of optical imaging modalities.

2. Computational models can augment research 
of WFS by allowing for the measurement of 
internal fields and phase.

3. We have presented and validated a physically 
realistic yet computationally efficient model of 
WFS. The model has replicated existing WFS 
research and is being exploited to investigate 
the shaping of light into biological tissue.

If interested, please attend my P+U talk tomorrow.
Gigan, Sylvain., Nature Photonics, 2017
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