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2. Simulate the propagation of plane wave at different 
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Using iterative phase modulation to focus through TiO2 (can we model WFS?)

Vellekoop and Mosk, Optics letters, 2007

TiO2 phantom

Target

Direction 

of light

Optimize phase through phantom to generate an optical focus
Our model is able to simulate WFS 

through highly scattering media

Replicate Vellekoop & Mosk

10µm TiO2 phantom with 
transport mean free path 

of ~5µm-1).

441 input modes
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Direction of Gaussian beam propagation

Angular spectrum method Random medium method

Change incident angle of light: Change scattering medium:

Cannot simulate any incident light

Remove medium correlations

Simulate any incident light

Keep medium correlations

o Special domains

o Memory effects

We use computational methods to investigate the requirements 

for a photoacoustic system to focus light into biological tissue

Would be useful to isolate medium specific effects

• Number of input modes

• Sensitivity
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text
6000+ 100x100x800µm3 random, tissue-like scattering domains (µs=15.67mm-1, g=0.95) 

[input modes]

Propagated Gaussian beams through domains, forming internal speckle patterns

[output modes]

• Numerical validation through comparison with 

Mie theory & Finite-Difference Time-Domain 
[are the simulated fields correct?]

Constructing tissue-like discrete particle domains

Incident 

Gaussian 

beam

Tissue-like domain Internal speckle pattern

Validating tissue-like domains and the T-matrix method

• Domain validation with Monte 

Carlo and Inverse Adding doubling.
[is the domain large enough?]

see 12388-15
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Optimize phase of 6000 input modes to focus 

light inside tissue-like media.

(2/6000)(3/6000)(4/6000)

(5/6000)

(6/6000)

(7/6000)

Input mode (1/6000)

|E|

Medium correlations 

isolated
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Investigating the enhancement of acoustic diffraction limited foci

Target

Focusing into a single speckle

Focusing into a volume

• PAWS cannot focus light into a single speckle

• Constrained by acoustic diffraction limit.

• Many more input modes required.

Plot enhancement vs 

acoustic voxel size.

30 MHZ

detector

Number of modes required to generate foci 

with a given enhancement grows rapidly.

X 10X Enhancement
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1. More input modes are required to achieve a focus with a 

given intensity.

2. Not every speckle can be made to constructively 
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• For fully developed speckle some grains will 

always be out of phase and destructively interfere.

• The enhancement per modulation approaches zero 

as the number of speckle increases.
Increased sensitivity requirements of a PAWS 

system to detect the effect of a given modulation

Ex, imag

Our method allows 

phase to be measured 

inside the medium

Phase is normally distributed.

Shaping into acoustic diffraction 

limit foci requires sensitive 

detectors, particularly if there is 

noise.
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What is exciting about this model?
Modelling correlations inside scattering media

|E|Measuring the angular 

memory effect range

Modelling the angular range of 

an optimized focus

Ansatz methods have 

struggled to model 

coherent phenomena 

(e.g. memory correlations)
.

Some methods exploit 

these correlations to focus 

light into scattering media.

Imaging FOV could be increased 

by exploiting memory correlations 

to translate already optimized foci.
.

Focusing might also be able to be 

accelerated by exploiting priors 

(e.g. sharing phase maps between 

input modes).

Focusing into arbitrary fields

Can be used 

to measure 

amplitude and 

phase of light 

shaped into 

any desired 

field.



Conclusions

TiO2 phantom

Direction 

of light

1. PAWS has the potential to enhance the depth 

of optical imaging modalities.

2. Rigorous computational model can be used to 
investigate the challenges of achieving an 
internal focusing using PAWS.

3. Our proposed model can be used to 
investigate the requirements of a PAWS 
system, and how correlations inside biological 
tissue can be exploited.

I'm happy to chat about any of my research, and if 
you're particularly interested in the model please 
review my talk yesterday (12388-15).

Wang & Yao, Nature Methods, 2016
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