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Mathematical and numerical modelling of buckling
of a spherical cell due to an osmotic shock.

Jake Bewick

Abstract—The flux of water under an osmotic gradient may cause buckling in biological cells. In this report we model a single
chondrocyte immersed in both a hypertonic and hypotonic medium as a multi-layer sphere. We implement the FTCS finite different
method in MATLAB to solve the parabolic partial differential equation describing the diffusion of water around - and through -
the cell. Our numerical result is then comprehensively validated - including a comparison with an existing semi-analytical solution
(of which we find <1% difference in mean intracellular concentration after complete convergence). Further mathematical modelling
allows us the simulate the expansion and contraction of the chondrocyte, as well as the buckling pressure acting on the membrane.
Our proposed solution can - and has - been used to solve analogous problems of drug delivery and heat transfer.
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I. LIST OF SYMBOLS

Symbol Variable Explanation

Ω - Complete modelling domain
Ωi - Intracellular medium
Ωm - Membrane
Ωe - Extracellular matrix
r - Radius
R1 R_1 Intracellular/membrane boundary
R2 R_2 Membrane/extracellular boundary
R∞ R_inf Boundary of modelling domain
D - Diffusivity
Di D_i Intracellular diffusivity
Dm D_m Membrane diffusivity
De D_e Extracellular diffusivity
c - Concentration
cin C_in Concentration inside cell
cout C_out Concentration outside cell
t - Time
T T Simulation time
θ - Polar angle
ϕ - Azimuthal angle
u u u substitution
φ phi φ substitution
cΩi

- Concentration in Ωi

cΩm - Concentration in Ωm

cΩe - Concentration in Ωe

ax ax Laplace of diffusion equation
ḡ1(s) g_1 Flux through R1

ḡ2(s) g_1 Flux through R2

µx u_x µ substitution with Dx

z2k−1 zk Caratheodroy-Fejer poles
f2k−1 ck Caratheodroy-Fejer residuals
qR2 - Water flux through R2

ρ rho Density of water
σb - Buckling stress
pb - Buckling pressure
h - Thickness
E E Elastic modulus
ν pos Possion’s ratio
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II. INTRODUCTION

The uneven distribution of solute across a cell membrane
induces a flux of water down the concentration gradient.
This movement of water would normally cause cells to either
expand or contract, but the activation of specific carrier
proteins and channels allow cells to regulate their internal
volume [1].

However, if the change in solute concentration is rapid,
osmotic homeostasis cannot be maintained. This negatively
affects the concentration, regulation and operation of
intracellular macromolecules [2] which has led a recent
aetiological study [3] to indicate that hyperosmotic stress
contributes to a number of human diseases.

In response to an uncontrollably severe osmotic shock
cells can even induce apoptosis in an effort of prevent
hemolysis [4]. Catastrophic osmotic shock results in the
complete failure of the mechanical integrity of the cell,
causing either lysis or buckling [5]. For over half a decade
this has been induced in cells to collect and study enzymes
without destroying their viability [6].

Formulation of a mathematical model is critical to properly
understanding - and controlling - osmotic shock. As buckling
pressure is proportional to the elastic modulus of a spherical
shell [7], working backwards we can use the mathematical
model to determine the mechanical properties of a cell.
Furthermore any derived solution can also easily be applied
to problems of drug delivery [8] and heat transfer [9].

A. The Need for a Numerical Solution

For over 70 years analytical solutions have existed to solve
diffusion through spherical shells [10]. So why is a numerical
solution needed?

Unfortunately, older analytical solutions only consider a
single spherical shell [10]. The diffusivity of water across
the cell membrane is much lower than through other cellular
regions [11], as such a more modern multi-layer model is
required [8], [12], [13]. These analytical solutions are often
very computationally expensive, either continuing [10] to rely
on the truncation of an infinite series [13], or Monte Carlo
methods [12].

All existing analytical solutions are also reliant on
axisymmetric spherical geometry. Cells are capable of
complex shapes, necessitating a numerical approach [14].

B. The Finite Difference Method

We will find a parabolic partial differential equation describes
how the concentration of water varies as a function of time
and radius. We opt to use finite differences to approximate
the solution, using the first-order forward Euler method in
time and the second-order central difference in space. This
scheme is known as the Forward-Time Central-Space (FTCS)

FDM.

The FTCS is an explicit method, meaning there is no
need to solve a system of linear equations [14] It is therefore
less computationally expensive than using an implicit scheme
such as the Crank-Nicolson. However, the FTCS is only
conditionally stable when applied to a parabolic PDE, a
conditional check in the MATLAB code ensures stability.

III. MATHEMATICAL FORMULATION

A. Modelling a Cell

We first model a cell and the surrounding medium to be
a closed ball, Ω, centred at x with a radius of R. We can
formally state this as:

Let R > 0 and x ∈ R3 where x = (x1, x2, x3). The 3-
dimensional closed ball centred at x with radius R denoted
Ω(x, R) is the set of points y ∈ R3 such that:

Ω(x,R) = {y ∈ R3 | ||y − x|| ≤ R} (1)

This closed ball is divided into three domains: Ωi, Ωm

and Ωe, representing the intracellular medium, membrane
and extracellular matrix respectively. We define radius R1

to delineate the boundary between Ωi and Ωm, radius R2 to
mark the Ωm/Ωe boundary, and R∞ to represent the radius, R
of the original ball, Ω. We require that 0 < R1 < R2 � R∞.
Note R∞ must be significantly larger than R2 so that far away
from the cell the concentration gradient is 0, we consider
R∞ semi-infinite. All radii and domains have been shown in
Figure 1.

Fig. 1. Deconstructing a spherical cell into a multilayer sphere consisting of
three contiguous domains.
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TABLE I
DOMAIN CONSTRAINS AND INITIAL CONDITIONS

Region Domain Constraints Diffusivity Concentration

Intracellular Ωi 0 < r ≤ R1 Di Cin

Membrane Ωm R1 < r ≤ R2 Dm Cin

Extracellular Ωe R2 < r ≤ R∞ De Cout

Each domain has a distinct and uniform diffusivity and initial
concentration assigned to it, all show in Table I.

Before continuing to derive the governing equations we
first must state the assumptions that limit and define this
model:

1) There exists a perfect contact between each domain.
Membrane effects such as the partition coefficient are
ignored [15].

2) The assigned concentration is uniform across any do-
main when t = 0s.

3) The assigned diffusivity is uniform across any domain
at all times.

4) The flux of water is dominated by diffusion. Therefore
the cell’s attempts to restore osmotic homeostasis are
negligible.

5) Both concentration and mass flux are conserved between
adjacent layers at all times.

B. Numerical Solution

Fick’s second law can be used to model diffusion within any
one domain [15]:

∂c

∂t
= D∇2c (2)

Given our spherical geometry it is sensible to work in spher-
ical coordinates. Therefore the expanded Laplace operator
becomes:

D∇2c =D

[
1

r2

∂

∂r

(
r2 ∂c

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂c

∂θ

)
+

1

r2 sin2 θ

∂2c

∂ϕ2

] (3)

Recall we model the cell as spherically symmetrical, so that
concentration does not change along the polar or azimuthal
angles:

0 =
∂c

∂θ
=
∂c

∂ϕ
(4)

So that with the removal of the polar and azimuthal terms
Equation 3 reduces to:

D∇2c =D

[
1

r2

∂

∂r

(
r2 ∂c

∂r

)
+
����������

1

r2 sin θ

∂

∂θ

(
sin θ

∂c

∂θ

)
+
�������1

r2 sin2 θ

∂2c

∂ϕ2

] (5)

So that the partial differential equation we must solve within
each region is:

∂c

∂t
= D

[
1

r2

∂

∂r

(
r2 ∂c

∂r

)]
(6)

This is rearanged and stated mathematically as:

∂c

∂t
= D

(
∂2c

∂r2
+

2

r
· ∂c
∂r

)
c = cin and D = Di when 0 < r < R1

c = cin and D = Dm when R1 < r < R2

c = cout and D = De when R2 < r < R∞


(7a)

(7b)
(7c)
(7d)

IV. NUMERICAL DISCRETISATION

A. Analytical Solution

There is a convenient [16] substitution often used in literature
to simplify Equation 7a. By substituting in u = cr we find that
Equation 7a reduces into a form analogous to the diffusion
equation in one dimension [17].

∂u

∂t
= D

∂2u

∂r2

u = cinr and D = Di when 0 < r < R1

u = cinr and D = Dm when R1 < r < R2

u = coutr and D = De when R2 < r < R∞


(8a)

(8b)
(8c)
(8d)

We solve this PDE using the Forward-Time Central-Space
(FTCS) Finite Difference Method (FDM), ensuring we con-
serve both concentration and flux across the boundaries [18].
Equation 8a becomes:

un+1
i − uni

∆t
= D

uni−1 − 2uni + uni+1

∆r2
(9)

Where n represents a time step and i a spatial step. We
rearrange and solve for un+1

i :

un+1
i = uni + φ

(
uni−1 − 2uni + uni+1

)
(10)

Where:
φ =

D∆t

∆r2
(11)

As previously mentioned the FTCS is only conditionally stable
when φ ≤ 1

2 .

B. Numerical Solution

Carr and Pontrelli’s semi-analytical solution [8] has been
implemented in MATLAB and used to validate my numerical
alternative. Put succinctly they consider concentration in each
layer as a function of time and radius, using the Laplace
transform to solve Equation 7a.

cΩi
(r, t) =L−1{c̄Ωi

(r, s)}
cΩm

(r, t) =L−1{c̄Ωm
(r, s)}

cΩe
(r, t) =L−1{c̄Ωe

(r, s)}
(12)

Where cΩ(r, t) is the concentration in a specific region as a
function of radius and time, and c̄Ω(r, s) is the concentration
in a region as a function of radius and frequency. The Laplace
transform then expands to:

L−1{c̄Ωi(r, s)} =cin + L−1{a1(r, s)ḡ1(s)}
L−1{c̄Ωm(r, s)} =cin + L−1{a2(r, s)ḡ1(s)}+

L−1{a3(r, s)ḡ2(s)}
L−1{c̄Ωe

(r, s)} =cout + L−1{a4(r, s)ḡ2(s)}

(13)
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Where ḡ1(s) and ḡ2(s) represent the mass flux through R1

and R2 respectively, and:

a1(r, s) = − R2
0sinh(µi(s)r)

rD0[cosh(µi(s)R0)µi(s)R0 − sinh(µi(s)R0)]

a2(r, s) =

R2
0[µm(s)R1cosh(µm(s)(r −R1))

+ sinh(µm(s)(r −R1))]

r[D1µm(s)∆R1cosh(µm(s)∆R1)

+ (sR1R0 −D1)sinh(µm(s)∆R1)]

a3(r, s) = −

R2
1[µm(s)R0cosh(µm(s)(r −R0))

+ sinh(µm(s)(r −R0))]

r[D1µm(s)∆R1cosh(µm(s)∆R1)

+ (sR1R0 −D1)sinh(µm(s)∆R1)]

a4(r, s) =
R2

1exp(−µe(s)(r −R1))

rD2[1 + µe(s)R1]
(14)

Where:

∆R1 = R2 −R1

µi =
√
s/Di

µm =
√
s/Dm

µe =
√
s/De

(15)

Carr and Pontrelli use the following quadrature formula, which
was suggested by Trefethen, Weideman and Schmelzer [19],
to approximate the inverse Laplace transform of all Equations
13:

L−1{ax(r, s)ḡj(s)} ≈ −2<


N/2∑
k=1

f2k−1
ax(r, sk)ḡj(sk)

t


(16)

Where:
• <{·} is the real part of a complex number
• N = 14 [8]
• z2k−1 are the poles found from the Caratheodroy-Fejer

method
• f2k−1 are the residuals found from the Caratheodroy-

Fejer method
• t is the time to evaluate at

However we must first solve for ḡj(sk) at j = 0 and j =
1 when sk = z2k−1. This is accomplished using Gaussian
elimination to solve an equation of the form Ax = b, where:

A =

[
a1(R1, sk)− a2(R1, sk) −a3(R1, sk)

a2(R2, sk) a3(R2, sk)− a4(R2, sk)

]
x =

[
ḡ1(sk)
ḡ2(sk)

]
b =

[
(cin − cin)/sk
(cout − cin)/sk

]
(17)

C. The Change in a Cell’s Radius Over Time

Both the proposed numerical solution and Carr and Pontrelli’s
semi-analytical solution produce values for concentration,
c(r, t). Numerical differentiation allows us to then derive the

concentration gradient,
(
∂c
∂r

)
. Ficks first law [15] then relates

the concentration gradient to the mass flux, q through the
membrane-extracellular boundary

qR2 = 4π(R2)2D

(
∂c

∂r

)
r=R2

(18)

Epstein and Plesset consider an analogous problem in “On the
Stability of Gas Bubbles in Liquid-Gas Solution” and derive
the mass flow through a spherical surface [16]:

qR2 = 4π(R2)2ρ

(
dR

dt

)
(19)

Where R is the radius of the cell membrane (R =
R2 at time t = 0) and ρ is the density of water. Substituting
Equations 18 and 19 together we get an equation explaining
radial change as a function of the concentration gradient at the
cell membrane:

dR

dt
=
D

ρ

(
∂c

∂r

)
r=R2

(20)

D. Buckling of a Spherical Shell

Love’s classical theory of spherical shell buckling was the
first attempt to analyse shell structures [20]. It is a linear
model that, despite its drawbacks [21], can still be used to
model buckling of our cell membrane. Where buckling stress
is σb, the buckling pressure is pb, radius is R and thickness,
h buckling stress can then be defined by [7]:

σb =
pbR

2h
(21)

Love’s theory then gives:

σb =
Eh/R√
3(1− ν2)

(22)

Where E is the elastic modulus of the cell membrane and ν
is its Poisson’s ratio. We can combine Equations 21 and 22 to
find that:

pb =
2E
[
h
R

]2√
3(1− ν2)

(23)

V. COMPUTATIONAL IMPLEMENTATION

A. Initial Set-up

All programming was done in MATLAB. First we clear the
workspace:

1 %% Clearing the Workspace
2

3 clc;
4 clear;
5 close all;

Then we can begin with the spatial discretisation. Start by
assigning the three radii, recall that we require 0 < R1 <
R2 � R∞

6 %% Spatial Discretization
7

8 R_1 = 5e-6;
9 R_2 = 5.008e-6;

10 R_inf = 10e-6;
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From there we assign the number of spatial steps, nr, from
this we can calculate exactly how many step are required until
reaching the boundaries R_1 or R_2:

11 nr = 50;
12 nr_R1 = round(nr*R_1/R_inf);
13 nr_R2 = round(nr*R_2/R_inf);

Finally we calculate spatial step size, dr and use that to
create a vector of length nr of all spatial steps (note that
this a linearly spaced vector, the consequences of this will be
referred to later in the report):

14 dr = R_inf/nr;
15 r_vec = [0:nr]’*dr;

Similarly we can now start on temporal disctetisation by
defining the total simulation time, T, the number of temporal
steps, nt, the temporal step size, dt, and a vector of all
temporal steps, t_vec (as is the case with r_vec, t_vec
is a linearly spaced vector):

16 T = 1/10;
17 nt = 100;
18 dt = T/nt;
19 t_vec = [0:nt]’*dt;

Now we can start defining some general cell properties and
boundary conditions, starting with the concentration, c at t =
0, c_in when 0 < r < R2 and c_out when R2 < r < R∞:

20 %% Cell Properties
21

22 c_in = 0;
23 c_out = 100;

We define the three diffusivities corresponding to the three
regions and define the molar density of water:

24 D_i = 1.38e-9;
25 D_m = 2e-12;
26 D_e = 1.2720e-9;
27 rho = 0.01802;

Recall the FTCS is only conditionally stable when φ ≤ 1
2 . We

calculate φ for each region and preform a stability check:

28 %% Check Stability
29

30 phi_i = (D_i*dt)/(dr*dr);
31 phi_m = (D_m*dt)/(dr*dr);
32 phi_e = (D_e*dt)/(dr*dr);
33

34 if phi_i>0.5 || phi_m>0.5 || phi_e>0.5
35 error(’Unstable’)
36 end

B. Numerical Solution

Now all variables have been defined and stability has been en-
sured we can start implementing our finite difference scheme.
We first preallocate a concentration matrix (m × n) where
m =nr and n =nt. We input boundary conditions into the
newly formed matrix:

37 %% FTCS
38

39 c_mat =ones(length(r_vec),length(t_vec));
40 c_mat(1:nr_R2,:) = c_in;
41 c_mat(nr_R2+1:end,:) = c_out;

Now we use bsxfun to make the u = cr substitution
mentioned earlier:

42 u_mat = bsxfun(@times,c_mat,r_vec);

The FTCS scheme has us solving Equation 10 at every element
of the matrix u_mat. This is accomplished using nested loops,
so that we solve along each spatial step before using Euler time
stepping to advance forward.

43 for n=1:nt
44 for i=2:nr_R1;
45 u_mat(i,n+1) =u_mat(i,n) + phi_i

*(u_mat(i-1,n)+u_mat(i+1,n)
-2.*u_mat(i,n));

46 for i=nr_R1:nr_R2;
47 u_mat(i,n+1) =u_mat(i,n) + phi_m

*(u_mat(i-1,n)+u_mat(i+1,n)
-2.*u_mat(i,n));

48 for i=nr_R2:nr;
49 u_mat(i,n+1) =u_mat(i,n) + phi_e

*(u_mat(i-1,n)+u_mat(i+1,n)
-2.*u_mat(i,n));

50 end
51 end
52 end
53 end

We once again use bsxfun to reverse the u-substitution,
arriving at the matrix of concentration we desired.

54 numerical = bsxfun(@rdivide,u_mat,r_vec);

C. Semi-Analytical Solution

We now implement Carr and Pontrelli’s semi-analytical solu-
tion so that we may validate our numerical solution. Start by
defining the limit of the summation in Equation 16 where we
take N = 14 [8]. We use function cf created by Trefethen,
Weideman and Schmelzer [19] to calculate the poles zk and
residuals ck using the Caratheodroy-Fejer method, which take
the form of vectors with length N . We also define ∆R1 from
Equation 15.

55 %% Analytical Solution
56

57 N = 14;
58 [zk,ck] = cf(N);
59 sk = zk/T;
60 DR1 = R_2-R_1;

As previously mentioned, before implementing the quadrature
formula (Equation 16) we must solve for ḡ1(sk) and ḡ2(sk)
where sk = z2k−1/T for k = 1, 2..., N/2. To do this we
use Gaussian elimination to solve Equation 17. We start by
opening a for loop to iterate through k = 1, 2..., N/2 and
defining the variable s:
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61 for k = 1:N/2
62 s=sk(2*k-1);

We now assign µi, µm and µe from Equation 15:

63 u_i = sqrt(s/D_i);
64 u_m = sqrt(s/D_m);
65 u_e = sqrt(s/D_e);

Recall from Equation 15 that we must calculate the values
of a1(r, sk), a2(r, sk) and a3(r, sk) when r = R1 and sk =
z2k−1/T :

66 r=R_1;
67 a1r1=-(R_1ˆ2*sinh(u_i*r))/(r*D_i*(

cosh(u_i*R_1)*u_i*R_1-sinh(u_i*R_1
)));

68 a2r1=(R_1ˆ2*(u_m*R_2*cosh(u_m*(r-R_2)
)+sinh(u_m*(r-R_2))))/(r*(D_m*u_m*
DR1*cosh(u_m*DR1)+(s*R_2*R_1-D1)*
sinh(u_m*DR1)));

69 a3r1=(-R_2ˆ2*(u_m*R_1*cosh(u_m*(r-R_1
))+sinh(u_m*(r-R_1))))/(r*(D_e*u_m

*DR1*cosh(u_m*DR1)+(s*R_2*R_1-D1)*
sinh(u_m*DR1)));

Likewise we calculate the values of a2(r, sk), a3(r, sk) and
a4(r, sk) when r = R2 and sk = z2k−1/T :

70 r=R_2;
71 a2r2=(R_1ˆ2*(u_m*R_2*cosh(u_m*(r-R_2)

)+sinh(u_m*(r-R_2))))/(r*(D1*u_m*
DR1*cosh(u_m*DR1)+(s*R_2*R_1-D1)*
sinh(u_m*DR1)));

72 a3r2=(-R_2ˆ2*(u_m*R_1*cosh(u_m*(r-R_1
))+sinh(u_m*(r-R_1))))/(r*(D1*u_m*
DR1*cosh(u_m*DR1)+(s*R_2*R_1-D1)*
sinh(u_m*DR1)));

73 a4r2=(R_2ˆ2*exp(-u_e*(r-R_2)))/(r*D2

*(1+u_e*R_2));

We form the matrices A and B such that we prepare to use
Gaussian elimination to solve a problem of the form Ax = b:

74 A=[a1r1-a2r1,-a3r1;a2r2,a3r2-a4r2)];
75 b=[(c_in-c_in)/s;(c_out-c_in)/s];

We use MATLAB’s built-in solver for systems of linear
equations to find ḡ1(sk) and ḡ2(sk) and we terminate the loop.

76 x(:,k)=A\b;
77 end
78 g_1 = x(1,:);
79 g_2 = x(2,:);

We can now use the quadrature formula (Equation 16) to solve
for concentration each each region independently. Starting
with the intracellular medium we begin a spatial loop bounded
from 0 to R1:

80 for n = 1:nr_R1

We then start to loop for all values of k = 1, 2...N/2, once
again defining s, u_i, u_m and u_e (see Equation 15):

86 for k=1:N/2
87 s=sk(2*k-1);
88 u_i = sqrt(s/D0);
89 u_m = sqrt(s/D1);
90 u_e = sqrt(s/D2);

We now create a vector containing all terms of the quadrature
formula (Equation 16) for k = 1, 2...N/2:

91 quad0(k)=ck(2*k-1)*(((-(R_1ˆ2*
sinh(u_i*r_vec(n)))/(r_vec(n)*
D0*(cosh(u_i*R_1)*u_i*R_1-sinh
(u_i*R_1))))*(g_1(k)))/(T));

Simply ending the inner loop and completing the summation
returns the value of the inverse Laplace transform:

92 end
93 total0 = sum(quad0);

So that we can generate a vector, length nr, containing the
concentration at any given time, T .

94 analytical(n) =c_in -2*real(total0);
95 end

Similarly we calculate concentration profiles for the mem-
brane:

96 for n = nr_R1+1:nr_R2
97 for k=1:N/2
98 s=sk(2*k-1);
99 u_i = sqrt(s/D0);

100 u_m = sqrt(s/D1);
101 u_e = sqrt(s/D2);
102 quad1(k)=ck(2*k-1)*((((R_1ˆ2*(u_m

*R_2*cosh(u_m*(r_vec(n)-R_2))+
sinh(u_m*(r_vec(n)-R_2))))/(
r_vec(n)*(D1*u_m*DR1*cosh(u_m*
DR1)+(s*R_2*R_1-D1)*sinh(u_m*
DR1))))*(g_1(k)))/(T));

103 quad2(k)=ck(2*k-1)*((((-R_2ˆ2*(
u_m*R_1*cosh(u_m*(r_vec(n)-R_1
))+sinh(u_m*(r_vec(n)-R_1))))
/(r_vec(n)*(D1*u_m*DR1*cosh(
u_m*DR1)+(s*R_2*R_1-D1)*sinh(
u_m*DR1))))*(g_2(k)))/(T));

104 end
105 total1 = sum(quad1);
106 total2 = sum(quad2);
107 analytical(n) =c_in -2*real(total1)

-2*real(total2);
108 end

And finally for the extracellular matrix:

109 for n = nr_R2:nr+1
110 for k=1:N/2
111 s=sk(2*k-1);
112 u_i = sqrt(s/D0);
113 u_m = sqrt(s/D1);
114 u_e = sqrt(s/D2);
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115 quad3(k)=ck(2*k-1)*((((R_2ˆ2*exp
(-u_e*(r_vec(n)-R_2)))/(r_vec(
n)*D2*(1+u_e*R_2)))*(g_2(k)))
/(T));

116 end
117 total3 = sum(quad3);
118 analytical(n) =c_out -2*real(total3);
119 end

D. Concentration Gradient, Radial Change, Flux and Buck-
ling Pressure

Now that we know concentration as a function of time and
radius we can easily calculate the concentration gradient using
MATLAB’s built in gradient function. Disregard FX, we
create a concentration gradient matrix, conc_grad and then
find the concentration gradient when r = R2:

120 %% Concentration Gradient
121

122 [FX,conc_grad]=gradient(numerical);
123 conc_grad_R2 = conc_grad(nr_R2,:);

We use the concentration gradient at R2 to calculate the radial
change from Equation 20:

124 %% Radial Change
125

126 rad_change = D_m/rho*c_grad_R2;

The variable rad_change describes the increase or decrease
in radius at each time step. To find the running change we
calculate its cumulative sum and add it to the initial radius:

127 rad_change = R_2+cumsum(rad_change);

We calculate flux from the concentration gradient using Equa-
tion 18:

128 %% Flux
129

130 q=4*pi*R_2ˆ2*D_m*conc_grad_R2;

We define the elastic modulus, E, the Possion’s ratio, pos,
and the membrane thickness, thickness:

131 %% Buckling Pressure
132

133 E=14e6;
134 pos=0.38;
135 thickness=R_2-R_1;

And calculate buckling from Equation 23:

136 buckling=(2*E*(thickness./rad_change).ˆ2)
/(sqrt(3*(1-posˆ2)));

VI. RESULTS AND DISCUSSION

We model a single chondrocyte suspended in saline solution
such that it forms a spherical shape [22]. We now assign the
realistic physical parameters found in Table II to our variables
in MATLAB.

TABLE II
PHYSICAL PARAMETERS OF A CHONDROCYTE SUSPENDED IN A SALINE

SOLUTION

Parameter Value Units Variable Source

R1 5 µm R_1 [23]
R2 8 nm R_2 [24]
R∞ 5×(R1 +R2) µm R_inf -
Di 1.36×10−9 m2s−1 D_i [25]
Dm 2.00×10−12 m2s−1 D_m [26]
De 2.27×10−9 m2s−1 D_e [27]
Cin 0 - c_in -
Cout 100 - c_out -

Note that R∞ is a large multiple of R1 + R2 to fulfil
the condition R2 � R∞. We can also observe that the
diffusivity of water in the intracellular and extracellular
domains are roughly the same, with Di being 60% of De.
The greatest impediment to the diffusive flux of water is the
cell membrane, with Dm being about 0.15% of De. As a
final note, for the sake of comparison Cin and Cout have
been normalised.

Before proper analysis of the results we must first validate our
provided numerical model. We propose two separate methods
to ensure our numerical solution works as intended: first we
observe if the simulation behaves as intuitively expected of a
cell - validation through stimulation - and then we directly
compare it to an existing analytical solution - validation
through imitation.

A. Validation Through Stimulation

1) Establishing a Baseline: After entering the variables
in Table II into MATLAB we find our numerical solution
produces Figure 2:
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Fig. 2. The concentration in a cell at time t = 1/1000s after a net flux
of water into the cell. The grey colouring represents the different domains,
with intensity proportional to diffusivity, this convention will be used for the
remained of the report. No observations will be made about the data - for now
we only analyse how this baseline changes in response to altered variables.
The data has been produced using the outlined numerical method.
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2) Does increasing diffusivity increase water flux into the
cell?: For our first experiment we begin by quadrupling the
diffusivity of the intracellular medium and the matrix, Di

and Dm respectively. We know from Fick’s first law that the
diffusive flux of water, J , will be directly proportional to the
diffusion coefficient [15]:

J = −D∇c (24)

So that we expect the water to have penetrated further into
the cell at any given time.
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Fig. 3. Numerical simulation of concentration in a cell at time t = 1/1000s
after a net flux of water into the cell. All variables set according to Table II,
except Di and Dm which have been quadrupled as compared to Figure 2.

Figure 3 clearly indicates this has happened: the concentration
of water at the origin has increased from 0.41% to 16.16%
and the mean water concentration in Ωi has increased from
5.57% to 21.57%.

Even more interestingly we are able to note a change
in the extracellular domain, Ωe, even though no associated
variable has been modified: the mean concentration of water
has decreased from 97.32% to 93.69% due to a local depletion
in water molecules at the cell membrane. This demonstrates
that the concentration in one domain is not just dependent
on its parameters, but also on the parameters of surrounding
domains. This indicates our numerical solution correctly
solves the three coupled equations that arise from having
three contiguous domains, correctly conserving concentration
and flux at each boundary.

3) Does the membrane actually have an affect on the
simulation?: Recall that the cell membrane, despite being
only 5µm thick (Table II), is the greatest impediment of water
flux into the intracellular domain. This is because a cell’s
membrane has a water diffusivity 680 times smaller than the
intracellular medium (Table II). So what would happen if
this membrane didn’t exist? We set Dm = Di and run the
simulation:
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Fig. 4. Numerical simulation of concentration in a cell at time t = 1/1000s
after a net flux of water into the cell. All variables set according to Table
II, except now we have set Dm = Di so that the membrane effectively no
longer exists.

Figure 4 shows mean intracellular concentration has increased
from 5.57% in Figure 2 to 19.01%. The concentration is much
higher in Ωi nearer towards the membrane, as compared
to Figure 3 which presents a much more flat concentration
profile across the domain. This is exactly what we expect
from the removal of the flux limiting membrane - water is
able to more easily diffuse into the cell, but then is slowed
by the lower diffusivity of the intracellular medium. The
diffusion limiting domain has effectively switched from Ωm

to Ωi.

Conversely if we make the membrane completely impermeable
we should make any net water flux impossible. Does our
solution capture this?
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Fig. 5. Numerical simulation of concentration in a cell at time t = 1/1000s.
All variables set according to Table II, except now Dm is 1000 times smaller
than the original value, effectively making it impermeable. As such there is
no net flux of water into the cell.
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Unsurprisingly we find from Figure 5 that the intracellular
concentration does not change from cin and the extracellular
concentration does not vary from cout. There has been
absolutely no movement of water across the now impermeable
membrane.

4) Can we simulate other things?: Recall that earlier in the
report we mentioned that any derived solution could also be
applied to problems of heat transfer and drug delivery, we
now present proof by way of modelling the dissolution of a
coated spherical capsule. We set the simulation parameters
according to Table III. This is the problem that appears in
Carr and Pontrelli’s report. [8].

TABLE III
PHYSICAL PARAMETERS OF A DISSOLVING DRUG

Parameter Value Units Variable Source

R1 1.5 mm R_1 [8]
R2 1.7 mm R_2 [8]
R∞ 5×(R1 +R2) µm R_inf -
Di 30×10−11 m2s−1 D_i [8]
Dm 5×10−11 m2s−1 D_m [8]
De 30×10−11 m2s−1 D_e [8]
Cin 0 - c_in -
Cout 1 - c_out -
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Fig. 6. Numerical simulation of drug dissolution from a coated spherical
capsule after 30 minutes. All variables set according to Table III.

From Figure 6 we correctly observe a net flux of solute
away from the drug. The thicker “membrane” is a good
demonstration of how a low diffusivity layer is able to
rapidly slow down diffusion, with concentration dropping
from 53.66% to just 21.25% over the space of just 2mm. It
becomes readily apparent that altering drug coating diffusivity
is an effective way of controlling the release of a drug [8].

Running this simulation also proves that our model is
capable of handling parameters of varying magnitude. Cells
are simulated with dimensions on the order of individual
microns, with time measured in thousandths of a second,

conversely drug diffusion must deal with millimetres and
minutes.

B. Validation Through Imitation

1) Mesh Convergence: For a robust validation of our
numerical solution we now compare it against an existing
analytical solution. Carr and Pontrelli present their solution
in the context of drug delivery [8], so we will continue to
simulate the dissolution of a spherical coated capsule with
identical parameters to that which they use in their report
(see Table III for the complete list).

Up until now no consideration has been given to the
mesh width, both spatial and temporal. Mesh size determines
the accuracy of our numerical solution, and so we increase
element density until mesh convergence has been achieved.
We start by setting the number of time steps, nt, equal to
10000, and then increment the number of spatial steps, nr,
until convergence is reached - defined by noting no further
change in the mean intracellular concentration despite further
mesh refinement. We create a MATLAB script to iterate
through the different step sizes and log the mean intracellular
concentration - this is then used to produce Figure 7.
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Fig. 7. Mean solute concentration in the domain Ωi after 30 minutes of
drug dissolution. Parameters set according to Table III, see Figure 6 for the
concentration profile when mesh convergence has been reached.

Note from Figure 7 that the analytical solution is not
dependent on mesh width and remains constant. For the
numerical solution intracellular concentration increases with
mesh density up until nr = 80. The converged numerical
solution has a mean concentration of 70.07% compared to
69.15% for the analytical result, an impressive difference of
< 1%. We also note that the numerical data oscillates about
this value, this may be due to how the mesh elements are
distributed across each domain: the number of elements until
R_1 is defined by the variable nr_R1. As R_1 does not
always divide evenly into the total number of elements nr
we must round it to the closest integer:
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12 nr_R1 = round(nr*R_1/R_inf)

This rounding introduces an error that is most likely respon-
sible for the variation. The Future Work section will address
ways to reduce or prevent this.

C. Concentration

Recall the first objective of our numerical code is to produce
the variable numerical, a matrix (m×n) of concentration at
each spatial step and time step (such that m =nr and n =nt).
We are able to plot this entire matrix using the MATLAB
function meshplot:
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Fig. 8. Mesh plot of the concentration of water within a cell placed in a
hypertonic solution. Time increases in increments of 1ms, terminating when
t = 1/10s. Spatial steps increase in increments of 0.2µm. All simulation
parameter set according to II. Radius is only plotted up to 10µm to produce
a more readable graph.

The mesh plot - Figure 8 is unintuitive and difficult to read,
but does have benefits that warrant its inclusion in the report.
It clearly depicts the discretisation used for our numerical
solution. Note for now that the meshing is uniform both in
space and time - this has significant drawbacks which we
address later in the report. Figure 8 also helps us understand
how the concentration profile (Figure 2) was derived. If you
cut a slice along the time axis at any given point you produce
a graph showing how concentration varies with radius at
that given time. If we take the slice when t = 1µs we
produce Figure 2. Likewise, if you want to see exactly how
concentration varies with time at any given radius we take a
slice normal to the radial axis.

D. Mass Flux, Radial Change and Buckling Pressure

Now that we have successfully generated and then validated
the concentration matrix (numerical) we can easily
manipulate it to calculate the water flux into the membrane
(Equation 18), the radial change of the cell (Equation 20) and
ultimately the buckling pressure (Equation 23) acting on the
chondrocyte.

All three have been calculated for a cell immersed in

both a hypertonic and hypotonic medium. We set the elastic
modulus equal to 14 kPa [28] Poisson’s ratio equal to 0.38
[29], both realistic physical parameters for a chondrocyte.
For the hypertonic simulation we set cin = 100mol·m−3 and
cout = 0mol·m−3. For the hypotonic model we reverse these
values. Both scenarios have been simulated and plotted on
the following page.

Figure 9 correctly suggests that a cell shrinks when
surrounded by a hypertonic medium, but it incorrect suggests
a negative radius, even when we have already stated r
must always be positive (see Equation 1). These values can
safely be disregarded however as our simulation also predicts
buckling occurring at t = 1µs (from Figure 11), before the
radius turns negative.

Our hypotonic simulation also correctly predicts swelling due
to the net influx of water (Figure 12), eventually leading to
a sixfold increase in cell size. This in turn causes a large
decrease in buckling pressure until equilibrium is reached
(Figure 13).

For both hypertonic and hypotonic conditions we know
that net water flux should be zero when the concentration
gradient is zero (Fick’s first law [15]). This has been correctly
modelled as shown in Figures 10 and 13.
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Fig. 9. Numerical simulation of the radial change of a chondrocyte in a
hypertonic medium. The cell shrinks as water diffuses out from the cell.
Recall we defined that the radius must always be positive, so values below 0
should be neglected.
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Fig. 10. Net molar flux of water out from a chondrocyte in a hypertonic
medium. When equilibrium is reached there is no net water flux.
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Fig. 11. Buckling pressure on a chondrocyte membrane following a net efflux
of water due to hypertonic conditions.
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Fig. 12. Numerical simulation of the radial change of a chondrocyte in a
hypotonic medium. The cell grows as water diffuses into the cell. When
equilibrium has been reached the cell has expanded to 32µm, over a sixfold
increase.
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Fig. 13. Net molar flux of water into a chondrocyte in a hypotonic medium.
When equilibrium is reached there is no net water flux.
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Fig. 14. Buckling pressure on a chondrocyte membrane following a net influx
of water due to hypotonic conditions.
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VII. FUTURE WORK

A. Improve Mesh Quality

Recall from Figure 8 that our numerical discretisation uses
a uniformly spaced mesh. This is an incredibly wasteful
practice - mesh density should be increased in regions where
there is a higher concentration gradient. To visualise this
we can actually use the MATLAB function gradient to
calculate and subsequently plot the concentration gradient of
Figure 8:
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Fig. 15. Concentration gradient of a chondrocyte in a hypertonic medium.
All variables set according to Table II. See Figure 8 for the equivalent
concentration profile.

It becomes apparent that the greatest changes in water
concentration happen near the membrane and earlier in time,
a finer mesh should be used here to better resolve important
detail. Far away from R2 and as the simulation advances the
concentration gradient approaches zero, a much wider mesh
must be used in these areas to reduce computational cost. We
offer two possible ways to program a mesh with non-uniform
element size.

The first solution is to create a function to weight the
vectors r_vec and t_vec higher nearer R2 and t = 0
respectively. One suggested way to achieve this would be to
run the provided numerical solution with uniform mesh width.
From this find the concentration gradient of the concentration
matrix (see Figure 15). Remap this to so that the minimum
value is 0 and the maximum value is 1 and use this to create
a weighting function to be applied to the space vector r_vec
and the time vector t_vec.

The second solution is much easier to implement: create
the meshing for each domain independently such that the
user can manually specify mesh width in each domain. This
has the added advantage of guaranteeing one element point
falls exactly on the boundary, so there is no need to use the
round function, which was suspected to cause the random
fluctuation seen in Figure 7.

B. Expand the Code to Allow for Any Number of Domains
Some cells such as chondrocytes [30] are capable of making
major structural and chemical changes to their surround-
ing medium over time. It stands to reason that this newly
established pericellular matrix (PCM) would have different
diffusion properties than the unaffected medium. Already some
attempts to simulate chondrocytes model the PCM as a distinct
domain [23]. If an extension is made to our existing code we
would be able to model any arbitrary number of domains, each
with distinct diffusivities and boundary conditions.

C. Move to an Implicit Finite Difference Method
Recall that FTCS is only stable when:

φ =
D∆t

∆r2
≤ 1

2
(25)

Depending on the chosen material’s diffusivity the ideal
choice of ∆t and ∆r might not always be practical, while
an unconditionally stable implicit scheme would still be
workable. Additionally the FTCS is only first-order in time
and second-order in space - leading to slower convergence
as compared to an exclusively second-order scheme. The
second-order, unconditionally stable Crank-Nicolson [31]
might be a better choice as a FDM scheme if computational
speed is less of an issue.

The Crank-Nicolson approximates Equation 8a differently
from the FTCS:

∂u

∂t
∼=
un+1
i − uni

∆t
(26)

and:

D
∂2u

∂r2
∼=
u

2

[
uni+1 − 2uni + uni−1

(∆r)
2 +

un+1
i+1 − 2un+1

i + un+1
i−1

(∆r)
2

]
(27)

So that rearranging produces:

−φun+1
i+1 +2(1+φ)un+1

i −φun+1
i−1 = φuni+1+2(1−φ)uni +φuni−1

(28)
Fortunately we find that this equation can be expressed as a
tridiagonal matrix of the form:

aixi−1 + bixi + cixi+1 = di (29)

b1 c1 0 0 0 0
a2 b2 c2 0 0 0
0 a3 b3 c3 0 0

0 0
. . . . . . . . . 0

0 0 0 aN−1 bN−1 cN−1

0 0 0 0 aN bN





x1

x2

x3

...
xN−1

xN


=



d1

d2

d3

...
dN−1

dN


(30)

Using the coefficients:

ai = − D

2∆r2
, (31)

bi =
1

∆t
+

D

∆r2
, (32)

ci = − D

2∆r2
(33)

di = aiu
n−1
i−1 +

(
1

∆t
+ ai + ci

)
un−1
i + ciu

n−1
i+1 (34)
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Luckily the use of a tridiagonal matrix allows us to apply
the incredibly efficient Thomas algorithm [32] - otherwise
known as the tridiagonal matrix algorithm, greatly reducing
computational cost compared to what is typically expected of
systems of linear equations. Even with the Thomas algorithm
an explicit method will still be faster for any given mesh width,
however we can expect the second-order Crank-Nicolson to
converge faster, facilitating use of a coarser mesh and possible
even lower simulation time.

VIII. CONCLUSION

The aim of this report has been to propose a numerical
solution able to solve problems of diffusion in a multi-layer
sphere, we have achieved this by using the FTSC FDM
to solve Fick’s second law in three contiguous domains,
conserving concentration and flux through each surface. To
this end we have developed a MATLAB script and used it to
model water influx or efflux from a chondrocyte membrane.
Further development of our solution has allowed us to
simulate the expansion and contraction of the chondrocyte, as
well as the buckling pressure on the membrane. We suggest it
may be possible to now work backwards - using our proposed
model to theoretically predict the mechanical properties of a
biological cell.

The numerical simulation of spherical geometries has
numerous applications - ranging from multi-phase flows to
heat transfer. During validation we’ve proved that we can
simulate the analogous problem of drug dissolution. Further
development of the proposed model has the potential to
decrease convergence time through the use of a second-order
scheme while also improving mesh refinement by switching
away from a uniform element size.
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