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Abstract

The delivery of coherent light into biological tissue is critical for numerous imag-

ing and treatment modalities. Unfortunately, tissue is highly scattering. As a

consequence, coherence is quickly lost and most of these modalities have a limited

effective depth. However, by spatially modulating the incident light we are able to

guide its propagation through a turbid medium, effectively unscrambling light scat-

tering and enabling deep tissue imaging. The process of engineering this spatially

modulated wave is known as wavefront shaping.

Wavefront shaping is still a nascent technique, the understanding of which has

been constrained by various experimental limitations. Researchers have limited

control over the design of a scattering medium, and are unable to easily image the

propagating light inside this medium. Instead, a new approach based on computa-

tional modelling would be necessary to fully understand wavefront shaping.

In this thesis we propose two separate models capable of simulating wavefront

shaping: an angular spectrum approach which simulates scattering using refractive

index variations, and a T-Matrix method that uses discrete spherical particles to rep-

resent tissue. We find that the angular spectrum method is efficient, but unable to

fully characterise the optical properties of biological tissue. The T-Matrix method is

better in this regard, and shows promise as a novel way to study wavefront shaping.
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Chapter 1

Introduction

1.1 Problem Statement

1.1.1 What is wavefront shaping?

Many biomedical applications rely on the delivery of light into biological tissue

for diagnostic and therapeutic purposes [1]. However, biological tissue contains

many refractive index inhomogeneities, which strongly scatters incident light [2]

and prevents deep tissue penetration. Coherence of the incident light is also quickly

lost due to multiple scattering.

Fortunately, scattering is a deterministic and effectively reversible process - a

spatially modulated wavefront can be engineered to generate a desired field either

inside or through a turbid medium. For example, by spatially steering an incident

wave an optical focus can be generated through a heavily scattering material (see

Figure 1.1).

In a single sentence: wavefront shaping (WFS) is the process by which light can

be spatially modulated to control how the scattered light interacts. This allows for

deeper tissue imaging with improved resolution and contrast [3] (other applications

of WFS will be discussed at detail later in the report).
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1.1.2 Applying computational modelling to wavefront shaping.

The vast majority of literature on wavefront shaping has been experimentally based.

The absence of computational research may be due to the difficulty of modelling

light propagation through turbid media - scattering is a micro-scale process oc-

curring throughout the entire volume of a macro-scale tissue, and as such most

simulation techniques are prohibitively difficult to run.

Nevertheless, there is a need to model wavefront shaping computationally. An

experimental approach is unable to evaluate the field inside the scattering medium,

instead relying on two different metrics to assess focus generation:

• If WFS is used to create a focus through a turbid medium the output field can

be imaged directly [4].

• If WFS is used to create a focus inside a turbid medium other feedback mech-

anisms must be used to evaluate the localised increase in light intensity (e.g.

using a florescent bead, or photoacoustic signal [5]). These non-direct mea-

surements of intensity can be considered analogous to the guidestars used in

adaptive optics.

Both methods are insufficient in fully charactering the generated focus, or the path

light takes to generate this focus. Many unanswered questions remain that cannot

easily be explored experimentally:

• If WFS through a medium, what is the 3D geometry of the focus? A 2D

image is unable to characterise whether the focus is tightly localised or more

oblate in shape.

• If WFS inside a medium, where is the focus actually located? Determining a

correct spatial position is limited by the resolution of the feedback mechanism

used for shaping.

• For both methods, what is happening inside the scattering medium? Although

unlikely, it may be entirely possible that multiple foci have been unintention-

ally generated.



1.2. Project Applications 13

Another motivation behind computationally simulating wavefront shaping is the

ability to have complete control over all simulation parameters. Carefully designed

scatterers can be deliberately placed to form a unique turbid medium. Additionally,

the incident wavefront can be more freely shaped and tissue parameters such as the

scattering coefficient and anisotropy can be specifically controlled.

A recent work by Yang et al. (and one of the only attempts to simulate WFS)

has investigated the effect camera signal-to-noise ratio, guidestar size and spatial

light modulator geometry have on focus generation, factors that would be difficult

to control for experimentally [6].

1.2 Project Applications
The applications of computationally modelling wavefront shaping will (hopefully)

become more clear when reading the report. They are nevertheless stated early to

act as a reference for the reader, and establish a clear motivation for the project.

• How does shaped light propagate through a scattering medium? Computa-

tional modelling allows us to evaluate the field throughout the medium, and

as such it is the only way to completely characterise the physics of wavefront

shaping.

• What impact do different biological tissues have? Experimental studies on

wavefront shaping have used an interesting mix of tissue, or tissue-like ma-

terials. Foci have been generated through titanium dioxide paint [7], ground

glass diffusers [7], chicken breast [8], a mouse tail [9], and even a human

tooth [4]. It may also be worth considering the effect that the clearing agents

used for optical coherence tomography would have on WFS [10].

• How does the method of shaping light effect light propagation? An optical

wavefront can be shaped using either phase or amplitude modulation, and this

modulation can either be binary or continuous. The maximum possible en-

hancement of each method has been determined theoretically, but experimen-

tally reported values are 10-30% lower than predicted [11]. Yu et al. suggest
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that this variation is likely caused by experimental limitations, such as vibra-

tion causing decorrelation, or temperature fluxuations [11] - all confounding

factors that can be controlled for computationally.

• What impact does noise have? The noise introduced by various experimen-

tal apparatus can be easily simulated. As previously mentioned, Yang et al.

have already investigated the effect detector signal-to-noise ratio has on focus

generation.

• What is the best procedure for modelling wavefront shaping through biolog-

ical tissue? Very few attempts have been made to computationally model

wavefront shaping. As of yet, no researcher has undertaken a critical review

of existing scattering models with the goal to evaluate their suitability for

wavefront shaping.

• What are the limits of the optical memory effect? Light propagation through

biological tissue is shift invariant - a small variation in the angle of the inci-

dent wave does not result in decorrelation [12]. To date, there has been no

computation investigation of this phenomena.

1.3 In this Thesis
The overarching goal of this thesis is to identify and evaluate computational mod-

els of wavefront shaping. We start by explaining the principles and practice of

wavefront shaping, before describing how light propagates through tissue, and the

different ways to model this propagation. We then introduce some conventional and

unconventional computation models, before identifying the two models would be

best suited to simulate wavefront shaping: the angular spectrum approach and the

T-Matrix method. We critically evaluate the models and describe the mathematical

background of each. We then describe how biological tissue can be resresented in

each model, before performing various light propagation simulations. We conclude

by critically evaluating the results of these simulations, and describe what we think

would be the best applications for each model.
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Figure 1.1: A demonstration of wavefront shaping. In a) coherent light incident on a tur-
bid medium is scattered, and would produce a speckle pattern on the imaging
plane. By spatially modulating the incident wavefront, as shown in b), it be-
comes possible to guide the propagating light through the scatterer, generating
an optical focus.



Chapter 2

Background

2.1 Principles and Practice of Wavefront Shaping

2.1.1 Spatial modulation of light

As previously mentioned, wavefront shaping is the process of spatially modulating

light to guide propagation through a scattering medium.

In WFS, a wavefront is subdivided into many elements, by modifying the phase

or amplitude of individual elements the propagation of light through a scattering

medium can be controlled. These phase or amplitude shifts are applied using a

family of optical devices called wavefront modulators, examples of which include

spatial light modulators (SLM) and digital micro-mirror devices (DMD). Each de-

vice varies in operation and as such has unique advantages and disadvantages: for

example, a DMD is generally faster and has a higher element count than a SLM,

but has a lower diffraction efficiency and is less suited to phase modulation [11].

Both amplitude and phase modulation can either be binary or more gradated. The

specific method of modulation determines the maximum possible enhancement, η ,

with full phase and amplitude control achieving an enhancement of [13]:

ηpred = α(N−1)+1 (2.1)
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where N is the number of elements used to control modulation and α represents an

enhancement factor that can be used to characterise the efficiency of other modula-

tion methods (see Table 2.1).

Table 2.1: Maximum possible enhancement for different spatial modulation methods. Data
taken from Vellekoop et al. [14]

Modulation Method α

Full phase π/4
Binary amplitude 1/2π

Binary phase 1/π

2.1.2 Determining the correct phase and/or amplitude map

There are two primary methods for determining the correct phase and/or amplitude

map for a given wavefront modulator: iterative methods and digital optical phase

conjugation (DOPC) methods.

Iterative methods shape a wavefront gradually using feedback mechanisms. For

example, to generate an optical focus, a feedback based mechanism might iterate

through each element on an SLM, shifting the phase between 0 and 2π while mea-

suring the resultant intensity change within a region of interest [4].

Measuring intensity is trivial if shaping through a turbid medium, the focal plane

can be projected directly onto a CCD [14]. However, when generating a focus

inside a scattering medium, direct measurement of intensity becomes impossible.

Instead guidestar based methods must be used [5].

In wavefront shaping, guidestars provide an indirect measurement of the field

inside a scattering medium. For the simplest example: a nanoscale fluorescent bead

is embedded within a turbid medium. By measuring the amount of excited light

generated during wavefront shaping, you would have an indirect measure of how

effectively incident light is being focused onto a the bead [15].
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Guidestars do not have to be physical beads - non-invasive alternatives include

measuring the strength of the ultrasond signal generated via the photoacoustic ef-

fect [16], or detecting a two-photon fluorescence signal [17].

In general, iterative methods are slow - limited by both optimisation algorithm

time and light modulator speed. This slow speed of focus generation currently

limits feedback based WFS techniques from being applied in dynamic biological

tissues [18], although recent developments have dramatically increased SLM speed

[19].

Optimisation algorithm development has also significantly increased the speed

of iterative approaches [20]. For a brief explaination and evaluation of four popular

algorithms see Table 2.2.
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Table 2.2: The various optimisation algorithms used in wavefront shaping. For a more
comprehensive comparison of different algorithms see the following two papers
both by Fayyaz et al. [21, 20].

Optimisation
algorithm

Explanation Comments

Stepwise
sequential

In sequential optimisation, the phase
or amplitude of each element is inde-
pendently modulated. The modulation
which provides the largest increase in
intensity for a given element is stored,
and the final mask is simply a combi-
nation of each optimised element [22].

Sequential optimisation is eventually
guaranteed to find the optimal phase
or amplitude map. Unfortunately, it
is very slow, and struggles with noise
[20].

Partition Half of the elements are randomly se-
lected and simultaneously optimised
for phase and/or amplitude. The algo-
rithm then repeats with another set of
elements being randomly selected [23].

As multiple channels are optimised in
parallel, intensity under the partition
algorithm grows much faster initially,
but quickly slows as the number of it-
erations increases [20].

Transmission
matrix

Transmission matrix methods fully
characterise the scattering behaviour of
a medium for a given incident wave.
After varying the phase of the nth SLM
element by either 0,π/2,π, or 3π/2
you measure the intensity of the mth

output channel [24]. The transmis-
sion matrix elements, tmn, can then
be found using the following equation
[20]: tmn = [(I0

m − Iπ
m)/4] + i[(I3π/2

m −
Iπ/2
m )/4].

Solving the transmission matrix allows
for a focus to be generated anywhere
within the medium. This approach suf-
fers from the same downside as the se-
quential method - each input channel
is evaluated independently, making the
algorithm very susceptible to the influ-
ence of noise [20]. Anther downside
is the requirement to measure the in-
tensity across the entire output field,
meaning transmission matrix methods
struggle to be used to generate foci in-
side a scattering medium.

Genetic al-
gorithms

In the genetic algorithm approach a
random phase and/or amplitude map is
generated and evaluated. The random
maps that produce the greatest focus in-
tensity are “bred” and then “mutated”
- meaning they are combined after ap-
plying a binary mask and a few ele-
ments are randomly shifted [25]. The
lower scoring maps are then deleted
and the algorithm repeats.

Genetic algorithms have two primary
advantages: they converge to a rela-
tively high intensity quickly [25] and
they are the most resistant to noise [20]
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The second approach to shaping a wave is called digital optical phase con-

jugation (DOPC). DOPC methods exploit the fact that scattering is deterministic

and time-reversible - a phase conjugated scattered wavefront should retake the ex-

act same trajectory as the original scattered wave [26]. If this scattered light first

originated from an focus either inside or behind a turbid medium, than an incident,

phase conjugated wavefront would naturally create the same focus.

Holographically measuring the phase conjugated scattered light generated by a

focus on the other side of a turbid medium is the simplest implementation of DOPC

[27]. However, it is difficult to generate the focus needed to produce the phase con-

jugated wavefront from inside a scatterer. A series of solutions have been created

to internally generate this focused signal.

One approach centres around implanting either a nanoparticle [28] or fluores-

cent bead [29] into the scattering medium, and measuring the generated second-

harmonic or fluorescent signal respectively. Although simple, these methods are

invasive when applied to biological tissue, and the focus point cannot be shifted

dynamically.

To allow for dynamic control of the focal point inside the tissue, the time-reversed

magnetically controlled perturbation (TRMCP) technique may be applied [30]. This

method works by detecting the absorption of light from a magnetic microsphere

and phase conjugating this light back into the tissue. The authors suggest that the

location of this particle may be controlled externally using a magnetron, allowing

for dynamic focusing. However, these methods are all invasive, and instead it may

be worth considering solutions that use a virtual guidestar for WFS.

An example of this is time-reversed ultrasonically encoded (TRUE) focusing.

TRUE focusing exploits the phenomena by which ultrasound is capable of mod-

ulating the frequency of diffuse light [31]. If this ultrasound is focused inside a



2.1. Principles and Practice of Wavefront Shaping 21

turbid medium, it would be possible to phase conjugate only the frequency shifted

light to produce an acoustic diffraction limited spot [32].

To overcome this acoustic diffraction size limitation researchers have proposed

two newer methods: time reversal of variance-encoded light (TROVE) and time-

reversal ultrasound microbubble encoded light (TRUME). In TROVE, multiple

input fields are all ultrasonically frequency shifted, the variance between these

shifted wavefronts is decoupled, producing a speckle sized focus [33]. In TRUME

the ultrasonic destruction of individual microbubbles is used to encode light, pro-

ducing a microbubble sized focus [34].

Virtual guidestars are also able to focus on moving targets, which may have ap-

plications for flow cytometry and blood monitoring [5]. The time-reversed adapted-

perturbation [35] (TRAP) method and time reversal by analysis of changing wave-

fronts from kinetic targets [36] (TRACK) method both create an optical focus by

holographically recording the scattered field of a moving target at two locations -

the conjugated difference in fields can then be used to focus light onto the moving

target [5].

2.1.3 Applications of Wavefront Shaping

WFS allows for deeper coherent light penetration into tissue, and as such has the

potential to directly benefit many biomedical imaging and treatment modalities. A

comprehensive evaluation of the applications of WFS can be found in Table 2.3.
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Table 2.3: Applications of wavefront shaping.

Imaging

Modality Description WFS Benefits Example applications

Photoacoustic

Imaging

Pulsed laser light causes biological tissue to generate ul-

trasonic waves via the photoacoustic effect, these sound

waves can then be detected by surface transducers [37].

Compared to ultrasound, photoacoustic imaging has a

higher resolution and greater specificity (as different

wavelengths of light are more efficiently absorbed by

specific chromophores). There are two varieties of pho-

toacoustic imaging: photoacoustic tomography and mi-

croscopy. In photoacoustic tomography, scattering causes

tissue to be bathed in diffuse light, and inverse algorithms

are needed to reconstruct the image from detected sig-

nals [38]. Optical resolution photoacoustic microscopy

instead uses a focused laser beam to spatially constrain

the origin of the ultrasonic signal, and as such no re-

construction algorithm is necessary [39]. The need for

spatial focusing limits this modality to superficial tissues,

approximately 1mm [1].

WFS can increase imag-

ing depth for photoacoustic

microscopy by creating an

optical focus inside a tur-

bid scattering medium. In

doing so WFS can produce

photoacoustic images with

a higher resolution and

signal-to-noise ratio [40].

Lai et al. have exploited the Grueneisen memory effect

to generate a nonlinear photoacoustic signal that allows

for optical focusing smaller than the acoustic diffraction

limit, producing images with a higher signal-to-noise ra-

tio [41]. Similarly, Conkey et al. also generate a sub-

acoustic diffraction limit focus and are able to produce

high resolution images of an alpaca hair and bee wing

[40]. One limitation of these nonlinear techniques is the

inability to control where focus emerges within the lim-

its of acoustic diffraction. Another approach is taken

by Chaigne et al., who do not use an iterative optimi-

sation algorithm, instead determining the photoacoustic

transmission matrix of a medium to generate a focus

[42]. One major advantage of transmission matrix shap-

ing approaches is the ability to investigate the impact of

each SLM pixel on multiple output modes, while itera-

tive methods only use a single output point the measured

signal [43].



2.1.
Principles

and
Practice

ofW
avefrontShaping

23

Optical co-

herence to-

mography

Optical coherence tomography (OCT) is a high resolu-

tion (< 10µm), low depth (about 1mm, although this is

much greater than most other optical methods) imaging

technique most commonly used for retinal imaging [44].

In OCT the backscattered light from tissue is used as the

contrast for imaging [45]. The speed of light is too fast

to directly measure time-of-flight information from the

backscattered light, instead low-coherence interferome-

try is used to provide axial information [46]. It is impor-

tant to note that the imaging contrast from OCT comes

only from singly backscattered light [47] - multiply scat-

tered light reduces contrast, resolution and penetration

depth [48].

By shaping the incident

light, WFS can cause mul-

tiply scattered light to in-

terfere, producing an op-

tical focus inside a turbid

tissue. This increases the

signal-to-noise ratio and

effective penetration depth.

Yu et al. have used binary amplitude modulation to focus

light into a fibrin phantom for OCT, reaching a maximum

increase in penetration depth of 92% [49]. They later ap-

ply the same method on biological tissue (a mouse tail)

and similarly find that increased imaging depth is possi-

ble with WFS [47]. The increase in penetration is smaller

for the biological mouse tail due to the faster decorrela-

tion time. Interestingly, one of the only WFS simulations

has been performed for OCT - with Kim et al. simulating

the benefits of WFS on OCT [50]. Prior to this work only

“indirect evidence” [50] of the effect of WFS on OCT

was available as it is practically impossible to measure

the complete internal field of a turbid medium. The re-

searchers use the finite-difference time-domain method,

which (as the name suggests) is a time-domain method,

and as such is well suited to modelling OCT, which uses

low-coherence light.



2.1.
Principles

and
Practice

ofW
avefrontShaping

24

Light sheet

fluorescence

microscopy

Light sheet fluorescence microscopy (LSFM) is an imag-

ing technique, unique in that the target tissue is illumi-

nated perpendicularly with a very thin plane of light [53].

As only a narrow slice is illuminated, LSFM is very effec-

tive at transverse sectioning of samples, producing high

contrast images (in conventional confocal microscopy the

unfocused background is also illuminated, reducing con-

trast [54]).

Ideally, the light sheet

should remain ballistic

when propagating through

target tissue, such that

nothing in the background

is illuminated [54]. WFS

can be used to refocus

scattered light to create a

more uniform sheet.

Dalgarno et al. have used a SLM to correct aberrations in

the light sheet through a tissue phantom [55]. The SLM

also allows them to dynamically switch between two dif-

ferent incident beams geometries used to generate the

light sheet, either a Gaussian or Bessel beam. Similarly,

Schneider et al. have used an optimisation algorithm to

create a light sheet through a turbid medium [56]. Both

these examples are a nice demonstration that WFS can be

used to generate more than simple foci.

Endoscopic

imaging

Modern endoscopes are comprised of multiple flexible

bundles of fibre optic cable capable of minimally invasive

imaging inside the human body [57]. Each individual fi-

bre optic cable is only capable of transmitting a single

optical mode, and so many are needed to transmit an im-

age with decent resolution. On its own, a less expensive

multimode fibre acts as a turbid medium, and is unable

to transmit an image instead producing a speckle pattern

[11].

WFS can transform inex-

pensive multimode fibres

into imaging fibres by re-

versing the impact of scat-

tering along the length of

the fibre.

A digital optical phase conjugation method was first to

produce a focus through a multimode fibre [58], with the

technique later being used to transfer entire images [59].

These phase conjugation methods are still reliant on mea-

suring the scattered field for time reversal, something that

would be impossible to achieve during live endoscopy.

Instead, using optimisation based methods to project im-

ages through a multimode fibre may be more practical

[60]. Unfortunately bending a multimode fibre causes the

internal transmission matrix to shift unpredictably, ren-

dering the previously optimised wave useless. This re-

mains an unsolved problem.
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Treatment

Photodynamic

therapy

In photodynamic therapy, incident light is used to initi-

ate a photosensitive chemical reaction that produces free

radicals capable of killing biological tissue [61]. Thera-

peutic tumour localising photosensitizers have been de-

veloped that allow photodynamic therapy to be used as a

targeted, minimally invasive method to treat cancer [62].

The scattering properties

of biological targets lim-

its photodynamic therapy

to superficial depths. WFS

can be used generate a

deep tissue focus, trigger-

ing photosensitizers non-

invasively.

The dynamic nature of biological tissue makes focus gen-

eration in deep tissue difficult [18]. Improvements in

SLM speed [19] and algorithm design [25] aim to im-

prove the speed of optimisation, such that dynamic focus

generation in deep tissue is possible.

Optogenetics Some naturally occurring ion channels are regulated by

light. Optogenetics exploits either these naturally occur-

ring, or artificially engineered [63] ion channels to study

the activity of individual neurons through controllable

modulation of these channels using incident light [64].

The primary advantage op-

togenetics has over ul-

trasonic neuromodulation

[65] is the ability to sharply

focus light such that indi-

vidual nerves can be inner-

vated. WFS can be used

to achieve cell-sized focus

generation through a scat-

tering medium.

The skull provides a optical barrier that prevents opto-

genetic neuromodulation of neurons in the brain. Yoon

et al. have managed to use WFS to generate an optical

focus inside a mouse brain (directly through the skull),

effecting a neuronal response [66]. Previous methods of

transcranial optogenetics relied on an invasive fibre optic

probe, which caused tissue damage.
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Other

Optical

tweezing

Optical tweezers allow researchers to individually manip-

ulate microscale particles using a highly focused laser

beam - dielectric particles would become trapped in

the focal point of the beam where the electric field is

strongest [67].

WFS can be used to en-

gineer large variations in

the phase profile of the

laser beam, which creates a

stiffer optical trap [68].

Taylor et al. [68] have used phase-only modulation to

create a stiffer optical trap that is limited by a very long

optimisation time, which they later improve upon [69].

Super-

resolution

lenses

The maximum achievable resolution of an optical system

is limited by diffraction [70]. Super-resolution imaging

attempts to surpass this diffraction limit.

Using a shaped beam and a

turbid medium, a focus can

be generated through this

“scattering super-lens”

[71] with diameter below

the diffraction limit of an

equivalent lens system.

Both Vellekoop et al. [72] and Park et al. [71] have

used scattering nanoparticles to create a turbid lens that

achieves sub-diffraction limit foci. When compared with

other super-resolution techniques such as metamaterial

lens or near-field scanning optical microscopy the turbid

lens are easier to manufacture, work at any wavelength

and do not require any moving parts.
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Cryptography A turbid medium can be used as a physical key for cryp-

tography - incident light (the input) is scattered multiple

times, producing a complex speckle pattern (the output).

The use of optical keys are attractive as even a simple

TiO2 scatterer has sufficiently many degrees of freedom

(particle number, density, size, location, refractive in-

dex, etc.) to create a practically unclonable cryptographic

function [73].

Spatially modulating an

incident wave can increase

the complexity of the

system, making it pro-

hibitively hard to crack

conventionally.

Standard turbid keys are vulnerable to emulation at-

tacks if the challenge-response behaviour of the sys-

tem is known the expected speckle pattern output can be

spoofed for a given input [73]. By using two spatial light

modulators and a low photon count incident beam, Go-

orden et al. have created a quantum secure authentica-

tion method [74]. The low photon count prevents char-

acterisation of the input light [75], and as such emulation

attacks are impossible [74]. Liao et al. have taken the

opposite approach, and instead present a method of us-

ing WFS to decrypt optical keys [76]. Such methods are

advantageous in that the cryptosystem doesnt have to be

rigorously characterised and can instead be solved using

iterative feedback based WFS methods.
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CommunicationFree space optical (FSO) systems are a high-bandwidth

alternative to traditional radio based communication sys-

tems, and use either visible or infrared light for data

transfer [77]. FSO transmitters and recievers are much

cheaper than RF devices, and have fewer bandwidth con-

straints, however they require a direct line of sight link

between transmitter and receiver, and are impaired by at-

mospheric turbulence [78].

A spatial light modulator

would be able to control

the angle of propagation of

a wave from a reflecting

surface, allowing a beam

to effectively bend around

obstacles.

Both Kaina et al. [79] and Najafi et al. [78] have pro-

posed positioning using a SLM as the reflecting surface to

control the angle of reflection of an incoming microwave

or infrared wave respectively. Cao et al. instead sug-

gest that an SLM can be directly built into the transmitter,

which would modulate the wave to controllably reflect of

the surrounding environment [80]. This method requires

only a single SLM to control reflection from multiple sur-

faces, but remains limited by the prohibitively slow op-

timisation time of the SLM. This problem may be miti-

gated in three ways: the SLM can be better coupled to the

target receiver, a faster SLM can be used (see Tzang et al.

[19]), or stationary features in surrounding environment

(walls, celings etc.) can be pre-scanned and shaped.



2.2. Models of Light Propagation in Tissue 29

2.2 Models of Light Propagation in Tissue

2.2.1 Light Scattering by Biological Tissues

The intensity of light decreases as it propagates through biological tissue. This

attenuation is caused by two mechanism: absorption and scattering. Absorption

describes how the energy of incident light decreases over distance in a specific

medium, while the scattering coefficient describes how the path of light is deflected.

The angle at which a photon gets deflected is known as the scattering angle. The av-

erage of the cosine of this angle across many such scattering interactions is known

as the anisotropy of the material. Light propagates through this material at a set

speed. The ratio of the speed of light in a vacuum to the speed of light in a given

material is known as the refractive index.

2.2.2 Tissue Optical Properties

To summarise, the propagation of light through a given tissue can be characterised

using four parameters:

• µa, the absorption coefficient, which describes the efficiency of light scatter-

ing

• µs, the scattering coefficient, which describes the efficiency of light absorp-

tion

• g, the anisotropy parameter, which is the average of the cosine of the angle of

scattered light

• n, the real refractive index, which describes the speed of light in the medium

By contolling these four parameters, we can design realistic tissue models of scat-

tering able to simulate wavefront shaping. Two different approaches are used: the

continuum model, or the discrete particle model.
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2.2.3 Continuum Model

In the continuum model of scattering the simulation domain is discretized into

continuous domain of random refractive index variations. [81]. Consequently, the

propagation of a incident coherent wavefront is randomly perturbed such that a

random speckle pattern is gnerated over depth. It has been found that the spatial

arrangement of these refractive index inhomogeneities can be described using the

Kolnogorov model of frozen turbulence [82].

The continuum approach is well suited to modelling large, heterogeneous do-

mains [83]. However, the size of the spartial inhomogeneities and refractive index

variations have not been directly coupled to the previously mentioned tissue optical

properties - instead a parameter fitting procedure is used to create the modelling

domain. For example, Yang et al. determine the standard deviation of refractive

index variation by finding the depth at which the DC and AC component of the

intensity field in k-space falls to unity (this depth would represent the transport

mean free path of the tissue model - an optical parameter that can be derived from

the scattering coefficient and anisotropy) [6].

In this report we couple the continuum aproach with the angular spectrum tech-

nique to model deep tissue scattering. We then compare two different wave shaping

methods, binary amplitude and phase, using the model.

2.2.4 Discrete Particle Model

The discrete particle model instead describes tissue as a random assembly of scatter-

ing spheres (although sometimes other axisymmetric geometries are used [84, 85]).

Contrary to the continuum model, the refractive index of the scatterers remains con-

stant, instead the radius and density can be controlled to vary optical properties [83].

One major advantage of the discrete particle approach is that the modelling do-

main is directly coupled to tissue optical properties using analytical Mie theory
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[86]. Consequently, the same principles underlying this model are frequently used

to design tissue-like phantoms [87]. To more accurately capture physically re-

alistic optical properties, it is even possible to create models where sphere radius

is not fixed, but instead follows a set distribution (e.g a lor-normal distribution [88]).

In this report we use the discrete particle approach to image the internal scattered

field throughout a scattering medium. We show how various sphere distributions

can create realistic speckle patterns, and validate the predicted optical properties of

our model.

2.3 Computational Electromagnetics

2.3.1 FDTD, FEM and BEM

Having described the two approaches to modelling biological tissue we must now

select an appropriate computational method for simulation. We start by consider-

ing three most common techniques [89]: the finite-difference time-domain (FDTD)

method, finite element method (FEM) and the boundary element method (BEM).

All three methods are rigorous: with theoretically infinite computational power all

methods would be able to simulate both continuum and discrete particle models

of scattering. Regrettably, we don’t live in a world with unlimited computational

power, and as such individual limitations make each method uniquely suitable to

simulating scattering. A brief comparison of the selected methods can be found in

Table 2.4.
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Table 2.4: Common, rigourous, methods in computational electromagnetics.

Computational

Method

Explanation Advantages Disadvantages

Finite-

difference

time-domain

(FDTD)

The FDTD discretizes the computa-

tional domain in space and time into

a regular grid of Yee cells, such that

Maxwell’s equations are reformulated

into central-difference approximations

that can be solved sequentially [90, 91].

The FDTD is a time domain method,

and as such the solution for multi-

ple frequencies can be solved simulta-

neously [92]. Further advantages in-

clude the simplicity of implementing

the FDTD [93], and the manageable

scaling behaviour [93]. Additionally,

perfectly matched layers have been cre-

ated for the FDTD method to simulate

an infinite absorbing layer surrounding

the computational domain [94].

The FDTD method requires a mesh

density of 8-16 Yee cells per wave-

length [95], and as such computational

complexity grows rapidly when simu-

lating visible light scattering through

large domains. Note that the pseu-

dospectral time-domain method uses a

fast Fourier transform as opposed to

finite differences to solve Maxwells

equations in space [96]. As a final

note, Yee cells are cubic voxels, and

as such struggle to accurately mesh

curved geometries (e.g. the discrete

particle model) [97].
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Finite ele-

ment method

(FEM)

The FEM is another way to solve

Maxwells equations by subdividing a

complex domain in manageable, finite

elements, the solution across each fi-

nite element can be solved by minimis-

ing the weighted residual error [98].

FEM allows for unstructured meshing

- the domain can be irregularly divided

into uniquely shaped elements (e.g. a

tetrahedron or pyramid). This allows

the FEM to better represent more com-

plex geometry [99]. Furthermore, the

FEM for electromagnetics has a greater

potential to be coupled with other FEM

physics solvers (e.g. mechanical or

thermal) [93].

The FEM is predominately a frequency

domain method, but can be formulated

in the time domain [100]. This solu-

tion is implicit it produces a system

of linear equations that must be solved

(e.g. using a matrix inversion). This is

more computationally taxing than the

explicit solutions found in the FDTD

method, but has the advantage of be-

ing unconditionally stable [99]. As a fi-

nal note, mesh generation for large do-

mains is often a surprisingly large un-

dertaking [93].

Boundary

element

method

(BEM)

Both the FDTD and FEM are differen-

tial methods, the BEM is an integral

method meaning the integral form of

Maxwells equations are solved across

the surface of a computational domain

[101].

As only the surface is meshed the BEM

is very efficient for homogeneous do-

mains with a low surface area to vol-

ume ratio [93].

Conversely, the BEM struggles to

model complex, inhomogeneous do-

main, like those needed to model op-

tical scattering.
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Computational domains used to model scattering would have a very large sur-

face area to volume ratio, and as such the BEM would be a completely unsuitable

choice. We have chosen to discuss it anyway to demonstrate how a computational

method which is ubiquitous in one field (radio-frequency engineering [93]), would

struggle to find use in another.

The FDTD method and FEM are both more suitable choices, but both have diffi-

culty simulating very large computational domains while maintailing a appropriate

mesh width. Instead, a better computational methods may be found by looking into

some less general techniques.

2.3.2 The Monte-Carlo Method

The previous computational methods all use carefully designed domains - tissue

optical properties are controlled through scatterer size, placement and refractive

index variation. The Monte-Carlo method instead considers the bulk scattering

properties of the medium, such as the scattering and absorption coefficients, and

the phase function [102].

By launching photon packets packets into this scattering medium the path and

extinction of given photon can be determined based in a probabilistic manner. For

example, an incident photon travels a random distance into a turbid medium, before

being absorbed (a random portion of the photons weight is removed) and scattered

(at a random angle) [103]. These steps are repeated until the photon is extinguished

or exits the modelling domain. Researchers are able to simulate the scattered field

inside a medium by combining the probabilistic paths of a large number of these

photons.

Note that this conventional approach to photon transport using the Monte Carlo

method is unable to produce a speckle image - the necessary micro-scale inho-

mogeneities that cause speckle are not considered. As such, the most common
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implementation of the Monte Carlo method cannot be used for wavefront shaping.

However, in 2019 Bar et al. proposed a Monte Carlo framework capable of ren-

dering speckle patterns using speckle statistics [104]. They are able to generate

solutions much faster than competing full-wave approaches, and have demonstrated

that the model can replicate optical phenomena such as the memory effect [104].

However, this method does not take a first-principles approach to speckle gen-

eration. By this we mean that microscale refractive index inhomogeneites cause

scattering, which produces a speckle pattern from incident coherent light. Full

wave models (e.g. FDTD, FEM) directly model these inhomogeneities and as such

produce a speckle pattern. In contrast, this Monte Carlo framework characterises

speckle statistically (using the mean and covariance). By not adopting a rigourous

first-principles approach to speckle generation, there is a risk that the statistical

formulation of speckle would become unreliable.

2.3.3 The Discrete Dipole Approximation

A scattering specific computational method that may be worth considering is the

discrete dipole approximation (DDA) method. In the DDA a scattering medium

is broken up into a regular array of polarisable dipoles [105]. The DDA is well

suited to modelling scattering by ireggular (but internally homogenous) scatterers,

and has been coupled with FFT techniques leading to a significant reduction in

computational time [106].

Unfortunately, like the Monte Carlo method, the DDA is poorly suited when sim-

ulating complex geometries - for example the microscale inhomogeneities used in

both the discrete particle model and continuum model. The method also suffers

when simulating targets with a large refractive index (> 2) [105]. Although this

does not include tissue, many tissue phantom use high refractive index microspheres

as scatterers [107].
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2.3.4 The Angular Spectrum Method

The angular spectrum method is able to simulate the propagation of light by de-

composing an incident wave field into an infinite series of plane waves using a

Fourier transform [108]. These plane waves are then propagated through a given

depth before an inverse Fourier transform is used to reconstruct the complex field

[108]. Introducing a variation in the refractive index when propagating each plane

wave results in the phase of each plane wave becoming shifted, such that over many

Fourier - Inverse Fourier cycles a speckle pattern is generated [6].

This method is well suited to modelling large domains, and has been used to

simulate scattering through 8mm of tissue [6]. However, similar to the Monte Carlo

framework for speckle generation, the angular spectrum method does not take a

first-principles approach to simulate scattering. The refractive index is randomly

distributed according to a Gaussian probability function - this standard deviation is

calculated by looking at the depth where photon transport becomes random relative

to the initial direction. This depth is the transport mean free path of the tissue and

the standard deviation is optimised to achieve a desired transport mean free path

[6]. This calculated deviation is not an inherent optical property of the medium,

instead it is entirely by angular spectrum specific design considerations (e.g. the

number of elements for the discrete Fourier or inverse Fourier transforms, or the

spacing between these transforms).

2.3.5 The T-Matrix Method

The T-Matrix method can be thought of as a expansion on standard Lorenz-Mie

theory in that it allows for the calculation of a scattered field from an assembly of

spherical scatterers (although other rotationally symmetrical particle can be used

[85]).

By recognising that the total field is a superposition of the incident field, and

the scattered field from all other scatterers in the modelling domain we are able to

formulate a system of linear equations that describe scattering in a medium [109].
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As the incident field can be calculated analytically, only the coefficients describ-

ing the sphere centred scattering coefficient have to be determined numerically.

One downside to determining the incident beam coefficients analytically is that the

arbitrarily shaped beams found in WFS are difficult to calculate - even very thin

Gaussian beams are unable to be modelled [110].

The T-Matrix method is only suited to simulating discrete particle models of tissue,

but nevertheless has many key advantages over competing rigourous computational

techniques. Firstly, the computation is predominatntly analytical, producing very

accurate results [111]. Furthermore, the solution itself is only calculated on the

surface of the scattering spheres (using vector spherical wave functions) leading to

“very little” memory use and “affordable CPU-time” [112].

The most advantageous property of T-Matrix approaches for WFS simulation is

the the elements of the T-Matrix for a given domain do not need to be recalculated

for a different incident waves [111]. This would allow us to evaluate focus gener-

ation by the arbitrary incident wavefronts used for wavefront shaping dramatically

faster than competing methods.

2.3.6 Requirements of a Wavefront Shaping Model

We now highlight the four most important requirements for a computational model

to efficiently simulate wavefront shaping. The model:

1. must be both time and memory efficient - An obvious point, but if deep

tissue scattering simulations are desired then many of the slower models (such

as FDTD) that require sub-wavelength discretization may be a poor choice.

2. must be a full-wave simulation that does not discard pahse information

- Phase information is critical to WFS, computaitonal methods that discard

phase information (e.g. diffusion theory, that treats photon transport as a

movement down concentration gradient [113]) cannot be used.

3. must allow for arbitrary incident wavefront to be modelled - Some meth-
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ods (T-Matrix, Monte Carlo) can struggle to represent the complex shaped

beams found in WFS while other methods like FDTD, FEM or the angular

spectrum find the problem trivial.

4. must take a “first-principles” approach to modelling a scattering domain

- if coherent light incident on a tissue with micro-scale refractive index in-

homogeneities causes a speckle pattern, then a approach that allows us to

directly model these index inhomogeneities would be most likely to capture

the physics of scattering.

Unfortunately, no one method is able to meet all four requirements to an entirely

satisfactory degree - instead we must prioritise what we want our model to achieve.

To this end, we propose two seperate models to evaluate WFS are distinct spa-

tial scales:

• An angular spectrum approach based on the work of Yang et al. [6] can be

used to simulate wavefront shaping in large domains using the continuum rep-

resentation of tissue. This model uses is very efficient at representing macro-

scale tissue, and can naturally handle arbitrarily shaped, complex incident

waves. Unfortunately, this approach characterises the scattering behaviour of

tissue using an arbitrary parameter - the standard deviation of the refractive

indicies across a Fourier plane, and as such is not as physical as a full-wave

first-principles approach.

• The T-Matrix method, specifically using the multiple sphere T-Matrix

(MSTM) FORTRAN code by Mackowski [110] can be coupled with the

discrete particle model of tissue to simulate scattering. This method is the

most time and memory efficient full-wave approach [112]. While it is the-

oretically possible that this method can be expanded to represent arbitrary

incident beams [114], in the meantime it is possible to decompose any com-

plex shaped wavefront into a series of solvable plane waves using the angular

spectrum approach [108].
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These two models can be best applied by considering the desired research goal be-

forehand. For example, the angular spectrum model can be used to evaluate differ-

ent wavefront shaping algorithms, or may be used as Yang et al. have to investigate

the impact different factors such as noise or SLM geometry have on focus gener-

ation. The T-Matrix approach would be better suited to studing the internal field

of a scattering medium, and any other poorly understood phenomena such as the

memory effect.



Chapter 3

Methods

3.1 The Two Models

We have identified two distinct, but useful scattering models and will now briefly

explain how we plan to use each in this thesis.

We propose that the angular spectrum approach will be best suited to either in-

vestigate the impact of confounding factors on wavefront shaping (e.g. noise or

guidestar size [6]), or to evaluate various optimisation algorithms or wave shaping

approaches.

Current techniques for comparing various optimisation algorithms use entirely non-

physical random transmission matrices to simulate scattering [20]. This method

is satisfactory for comparing the algorithms found in Table 2.2, but more modern

approaches leverage machine learning to decrease optimisation time [115, 116].

These recent machine learning algorithms look at patterns within the developing

speckle to speed up focus generation, and as such cannot be evaluated using simple

random transmission matrix based approaches. Instead the angular spectum method

may be used to generate more physical deep tissue speckle patterns that can assist

the development of these machine learning based algorithms.

Similarly, no one has investigated the difference between the theoretical WFS
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enhancement factors (see Table 2.1) and the experimental results which can be as

great as 30% [11]. Are these differences really caused by temperature fluctuations

or mechanical vibration [11]? An angular spectrum model comparing the enhance-

ment produced by a phase based or amplitude based spatial modulation may be

useful.

In this report we begin to formulate the answers to these questions by using the

angular spectrum method to simulate iterative focus generation using the stepwise-

sequential algorithm [4] to create a binary amplitude and binary phase shaped focus

through 8mm of scattering tissue.

On the other hand, the T-Matrix method is well suited to look inside a physically

realistic scattering medium. Investigations of the memory effect [5] and feedback

based WFS [5] have all been performed experimentally and as such are limited

by the usual experimental constraints (cannot see inside the medium, incomplete

control over medium parameters, effect of noise, etc.). We propose that many of the

questions found in Section 1.2 (that won’t be restated for brevity) can be answered

using a T-Matrix based simulation approach.

To this end, we show that the T-Matrix method can generate physically realistic

speckle patterns, and can be used to visualise the internal field of a turbid medium.

We also demonstrate that the T-Matrix method can be directly used to simulate

tissue-like media with the discrete particle model by comparing the scattering co-

efficient and anisotropy determined using the T-Matrix method against the values

calculated using analytical Mie theory and the inverse adding-doubling method

[117].

3.2 Mathematical Theory

We proceed by formulating the mathematical theory underlying the two models.
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3.2.1 The Angular Spectrum Method

The angular spectrum method is (by far) the simplest model. In this method an

arbitrarily complex incident wave, Es(x,y), is decomposed into an infinite series of

plane waves using a 2D Fourier transform [6]:

ÊS(kx,ky) =
1

2π
=
∫ ∫

Es(x,y)exp [−i(kxx+ kyy)]dxdy (3.1)

where ÊS is now the aplitude of the complex plane wave and kx and ky are the spatial

frequencies in the x and y direction respectively [6], We now propagate these plane

wave forward in space a diven distance, d:

ÊD(kx,ky) = Ês(kx,ky)exp

i ·n ·d ·

√(
2π

λ

)2

− k2
x − k2

y

 (3.2)

Where ÊD is the propagated plane wave, and n the refractive index. Finally, by

performing an inverse Fourier transform we are able to reconstruct across this depth:

ED(x,y) =
1

2π

∫ ∫
ÊD(kx,ky)exp [i(kxx+ kyy)]dkxdky (3.3)

Computationally, the above procedure is performed using a fast Fourier transform

(FFT) and inverse Fourier transform (iFFT) within MATLAB. In the Yang et al.

implementation of the angular spectrum model on each element of the FFT-iFFT

propagation matrix the refractive index is varied according to a Gaussian random

distribution:

(x) =
1

nσ

√
2π

e−
1
2

(
x−nµ

nσ

)2

(3.4)

Where nµ is the refractive index mean and nσ is the refractive index standard devi-

ation that control the scattering behaviour of the method. By repeating these FFT-

iFFT steps the propagation of light into a deep tissue medium can be simulated.
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3.2.2 The T-Matrix Method

As a preliminary warning, note that most of the mathematical formalisation found

in this section is taken from the work of T-Matrix pioneers Mackowski and

Mishchenko [118]. Much to this author’s chagrin, there appears to be no con-

cise way to mathematically describe the T-Matrix method. Instead, a choice must

be made on where to truncate the explanation to prevent leading the reader down

long tangents about the vector spherical wave function translation rule, or Wigner

d-functions. A much more comprehensive explaination of the T-Matrix method can

be found in this textbook by Mishchenko et al.[119], or for an explaination of how

this method is implemented computationally see this paper also by Mackowski and

Mishchenko [110]. Ultimately, in this section we hope that the reader can leave

understanding what the T-Matrix is, and what coefficients must be solved to reach

a solution.

We use the T-Matrix method to calculate the field scattered by an assembly of

independent spheres. The total scattered wavefront, Etotal , would be a linear com-

bination of the scattered field (Esca) from each sphere, i, and the incident field (Einc)

[119]:

Etotal = Einc +
Ns

∑
i−1

Ei
sca (3.5)

To calculate the scattered field from each sphere we must know what light is incident

on that sphere - logically this would be a combination of the incident field and

the scattered light from every other sphere in the model. Therefore we begin by

calculating the vector spherical wave function (VSWF) expansions of the incident

and scattered field centred around the origin of i-th sphere in the cluster:

Ei
scat =

∞

∑
n=1

n

∑
m=−n

[
ai

mnM3
mn(Kri,θ i,ϕ i)+bi

mnN3
mn(Kri,θ i,ϕ i)

]
Ei

inc =
∞

∑
n=1

n

∑
m=−n

[
pi

mnM1
mn(Kri,θ i,ϕ i)+qi

mnN1
mn(Kri,θ i,ϕ i)

] (3.6)
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Where K is the wavenumber, r,θ ,ϕ are the radius, polar angle and azimuthal angle

respectively, m is the degree and n the order of the VSWFs, amn,bmn, pmn and qmn

are the unknown coefficients. M1
mn and N1

mn are regular VSWFs, while M3
mn and

N3
mn are radiating VSWFs. VSWF are functions that are solutions to the Helmholtz

equation constructed from regular Bessel functions, the distinction between regular

and radiating VSWFs are important as only radiating VSWFs are formulated with

the Hankel function which ends up satisfying the Sommerfeld radiation condition

[120].

To calculate the light incident on the i-th sphere we must rewrite the scattered

field VSWF expansion about each sphere for all other spheres. To do so we use the

addition theorem for VSWFs [118]:

M3
mn(Kri,θ i,ϕ i) =

∞

∑
l=1

l

∑
k=−1

[A(3)
mnkl(KRi j,Θi j,Φi j)M1

kl(Kri,θ i,ϕ i)

+B(3)
mnkl(KRi j,Θi j,Φi j)N1

kl(Kri,θ i,ϕ i)]

(3.7)

N3
mn(Kri,θ i,ϕ i) =

∞

∑
l=1

l

∑
k=−1

[A(3)
mnkl(KRi j,Θi j,Φi j)N1

kl(Kri,θ i,ϕ i)

+B(3)
mnkl(KRi j,Θi j,Φi j)M1

kl(Kri,θ i,ϕ i)]

(3.8)

Where Ri j,Θi j, and Φi j is the distance, polar angle, and azimuthal angle between

spheres i and j, and k and l are the degree and order of the new expansions.

Note that unlike the previous expansion coefficients, A(3)
mnkl(KRi j,Θi j,Φi j) and

B(3)
mnkl(KRi j,Θi j,Φi j) are entirely dependent on the locations of sphere i and j and

do not have to be calculated.

It is now posssible to use Equations 3.7 and 3.8 to create a linear relationship
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between the scattering coefficients and incident coefficients:

ai
mn = āi

n

[
pi

mn−
Ns

∑
j=1
j 6=i

Ls

∑
l=1

l

∑
k=−l

[A(3)
klmn(KRi j,Θi j,Φi j)a j

kl]

+B(3)
klmn(KRi j,Θi j,Φi j)bkl ∗ j

] (3.9)

bi
mn = b̄i

n

[
pi

mn−
Ns

∑
j=1
j 6=i

Ls

∑
l=1

l

∑
k=−l

[A(3)
klmn(KRi j,Θi j,Φi j)b j

kl]

+B(3)
klmn(KRi j,Θi j,Φi j)akl ∗ j

] (3.10)

where Ls is the truncation order of the VSWF expansion and āi
n and b̄i

n are the same

coefficients found in Lorenz/Mie theory [86]:

āi
n =

miψ ′n(x
i)ψn(mixi)−ψn(xi)ψ ′n(m

ixi)

miξ ′n(xi)ψn(mixi)−ξn(xi)ψ ′n(mixi)

b̄i
n =

ψ ′n(x
i)ψn(mixi)−miψn(xi)ψ ′n(m

ixi)

ξ ′n(xi)ψn(mixi)−miiξn(xi)ψ ′n(mixi)

(3.11)

where x is the size parameter of the i-th sphere and ψn and ξ are Ricatti-Bessel

functions [118].

Before proceeding with formulating the T-Matrix consider the incident expan-

sion coefficient - pi
mn and qi

mn. They can actually be determined analytically. For a

incident plane wave propagating towards the shared target origin at azimuthal angle

α and polar angle β this becomes:pi
mn

qi
mn

=−4πin+1e−imα

 τmnp(cosβ )

iτmn(3−p)(cosβ )

 (3.12)

where τmn(3−p) is:

τ(cosβ ) =−1
4

(
2n+1

π

)1/2(
(−1)pD

(n)
−1m(cosβ )+D

(n)
1m (cosβ )

)
(3.13)
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with D being the Wigner d-function [119]. Incident Gaussian beams can also be

represented as a VSWF expansion using the localized approximation [121]:pGB,mn

qGB,mn

= ḡn

aPW,mn

bPW,mn

 (3.14)

Where ŝ is the polarisation state and ḡn is:

ḡn = exp
(

n+1/2
kω0

)2

(3.15)

and ω0 is the Gaussian beam width at the focus. Note that this approximation only

holds when Kω0 ≥ 5 [121]. Ultimately, for both incident waves, this means that

the only unknown coefficients are ai
mn and bi

mn. It is convenient to create a compact

form of Equations 3.9 and 3.10 which contain these unknowns:

ai
mnp + āi

np

Ns

∑
j=1
j 6=i

Ls

∑
l=1

l

∑
k=−l

2

∑
q=1

H i j
mnpklqa j

klq = āi
nppi

mnp (3.16)

With the subscripts p and q representing the TM and TE modes and have the values

of 1 or 2 respectively. H is also used as shorthand to represent the Hankel function

addition coefficient, A and B:

H i j
mn1kl1 = H i j

mn2kl2 = A(3)
klmn(kRi j,Θi j,Φi j)

H i j
mn1kl2 = H i j

mn2kl1 = B(3)
klmn(kRi j,Θi j,Φi j)

(3.17)

Inverting Equation 3.16 now allows us to identify the eponymous T-Matrix:

ai
mnp =

Ns

∑
j=1

Ls

∑
l=1

l

∑
k=−l

2

∑
q=1

T i j
mnpklqp j

klq (3.18)

This T-Matrix is the only aspect of the method that is determined numerically.

Within the software package MSTM (which was used for this report) the T-Matrix

is solved using the bi-conjugate gradient method [110]. Having determined the

scattering expansion coefficients the field can be found from Equations 3.5 and 3.6.
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3.3 Generating the Model Domain
Both models are unique in representing a scattering medium. The angular spec-

trum approach uses a variant of the continuum method, by which a turbid medium

is modelled as normally distributed refractive index variations across a series of

FFT-iFFT planes. In contrast, the T-Matrix method is explicitly a discrete particle

based approach - scatterer geometry, location and refractive indices define the scat-

tering response of the medium. The methods of generating these distinct modelling

domains are described below.

3.3.1 Angular Spectrum and the Continuum Model

Yang et al. define the depth between FFT-iFFT pairs to be 20µm, with the only

requirement being that this length was significantly smaller than the transport mean

free path length of the medium [6]. To simulate the desired 8mm of tissue means

that 400 angular spectrum pairs are needed. Each FFT-iFFT plane is dicretized into

2048× 2048 points with a spacing of 5µm. Using these measuremnts we can cal-

culate the geometry of the entire modelling domain, which is a rectangular cuboid

of dimensions 10.24mm×10.24mm×8.00mm.

We continue by defining the SLM geometry - we spatially modulate the wave

by applying a phase or amplitude mask of size 64×64 on the incident beam, such

that each SLM elements simultaneously modulates 32× 32 elements of the FFT-

iFFT plane.

The parameter nµ = 1.4 as this refractive index is approximately the value of

biological tissue [6], while the value of nσ was determined by parameter fitting. By

looking in k-space for the depth at which the DC component (representing ballistic

light) and average AC component (scattered light) of intensity become equal should

give you the transport mean free path length of the model. As such nσ = 1.6×10−1

to produce a mean free path length of 1mm, matching tissue [6].

This is a very tenuous way to characterise the optical properties of biological tissue.
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It is difficult to quantify exactly at what distance the DC and AC components fall to

unity, and even a small fluctuation in nσ dramatically changes the transport mean

free path length. Secondly, the transport mean free path, l′, is defined as:

l′ =
1

µa +µs(1−g)
(3.19)

By just using the transport mean free path to characterise tissue no distinction is

made between the absorption coefficient, the scattering coefficient or the anisotropy

as all are included in the definition. For example, a highly absorping by lowly

scattering material may have the exact same l′ as a lowly absorbing but highly scat-

tering material and as such it is impossible to say the medium used representative

of biological tissue.

A consequence of not using an correct tissue optical properties in this method

is that the chosen value of nσ is entirely dependent on the geometry of our simula-

tion (e.g. the distance between scattering planes, or element width) [6].

Despite being unable to realistically characterise tissue, the angular spectrum

method can be used to provide a more realistic framework (compared to the simple

matrix based approach) to evaluate different optimisation algorithms and shaping

methods.

3.3.2 T-Matrix and the Discrete Particle Model

The T-Matrix method is exclusively a discrete particle based method, and as such

to define the model we must specifiy: the number of spheres and the position, ra-

dius and refractive index of each sphere [110]. Sphere boundaries are not able to

intersect, but multi-layered spheres can be created.

3.3.2.1 Domain Generation

To generate this multisphere domain we create a MATLAB code to randomly place

spheres within a confining geometry. The input parameters for this code are:

• Ns - the number of spheres
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• ρs - the sphere density (as volume fraction)

• rs - the radius of the spheres

• ns - the complex refractive index of the spheres

• nb - the complex refractive index of the background

The code starts by determining the total simulation domain size:

Vtotal =
4
3

πr3
s ×Ns×

1
ρs

(3.20)

We then define a constraining geometry with volume Vtotal into which Ns spheres

can be randomly placed. For shapes which have only one parameter defining the

volume (e.g. a cube with edge length, or a sphere with radius) the constraining

domain can be automatically defined. However, more complex geometries require

the sizes to either be constrained or explicitly defined (e.g. to create a cylinder of

volume Vtotal either the radius of height must be defined).

The code then iterates across, placing a sphere randomly within this confining

geometry and checks for any intersecting surfaces. The code repeats until Ns non-

intersecting spheres have been placed.

This method struggles to places all spheres at higher densities, instead the

Lubachevsky-Stillinger algorithm may be applied to achieve higher sphere packing

[122]. It would be unlikely to need this however, as most discrete particle models

use a low density [88].

Finally, the code also allows for a radius distribution to be defined rather than a

fixed radius for each sphere. Discrete particle models that uses a radius distribution

are better able to model both the scattering coefficient and anisotropy of biological

tissue [88], a important point that will be discussed more later.
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3.3.2.2 Determining the Domain Parameters

Lorenz-Mie theory is used to determine the correct particle density to produce a

modelling domain with a specific scattering ceoefficient and anisotrop from spheres

of a set radius and refractive index. The Lorenz-Mie theory is a well known an-

alytical solution that describes how a sphere scatters an incident plane wave [86].

Practically, we use it in the following manner to create our discrete particle domain:

1. Choose a scatterer - Rutile titanium dioxide is a sensible choice due to

the high refractive index causing stronger scattering for a given number of

spheres. We find the diameter of rutile TiO2 to be ≈ 1µm and the refractive

index to be 2.5836 at a wavelength of 633nm [123].

2. Choose a target scattering coefficient or anisotropy - Lets say we want a

tissue equivalent µs ≈ 100cm−1 [124].

3. Use a Lorenz-Mie solver to find the density that gives you the desired scat-

tering coefficient - We use MATLAB code provided by Bohren and Huffman

modified by us to calculate the scattering coefficient and anisotropy at multi-

ple wavelengths [125].

In the above example we find that a density of 0.25% produces a scattering coeffi-

cient around 100cm−1 (see Figure 3.1). Note that although this scattering coefficient

is realistic for biological tissue, the anisotropy is not (tissue is predominately for-

ward scattering, with g = [0.7− 0.9][2]). This is a limitation of using only one

scatterer radius to describe tissue optical properties, and will be discussed more

later.
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Figure 3.1: Using the Lorenz-Mie theory to determine the scattering coefficient (µs) and
anisotropy (g) of a multisphere domain where density = 0.25%, sphere diame-
ter = 1µm and the refractive index = 2.5836 (the diameter and refractive index
of rutile TiO2). We can use Lorenz-Mie theory as a simple way to design dis-
crete particle models for use in T-Matrix simulations.

3.4 Scaling within MSTM
As previously mentioned, the T-Matrix simulations in this report we performed

using the MSTM FORTRAN code created by Mackowski [110]. The code has

been parallelised with a distributed memory architecture using the Message Pass-

ing Interface (MPI) standard [110]. In distributed memory systems each thread is

allocated its own private memory, which is useful when running software over com-

puter clusters [126]. However, this method of parallelisation causes problems when

running MSTM with multiple cores on a single computer. As each core is allocated

memory independently, the memory requirements quickly grow unfeasibly large

for more diffucult simulations [127].

Other researchers using MSTM have copped with this limitation by constraining the
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number of cores used for larger runs [127], although this obviously has a significant

impact on computational time. Our solution was to partially parallelise MSTM

using a shared memory architecture - specifically the Open Multi-Processing stan-

dard (OpenMP). Shared memory systems, as the name suggests, creates a shared

memory pool that can be accessed by each thread [126].

At present, we have used OpenMP to parallelise the near field calculation within

MSTM - Equation 3.5 is evaluated in parallel at multiple locations to construct an

entire near field plane. Recall that T-Matrix methods only have to calculate the

T-Matrix once for a given domain, we can then calculate the near field repeatedly

for different incident wavefronts using our memory efficient parallelization.

To investigate the scaling behaviour of our hybrid OpenMP-MPI version of MSTM

we generate multiple sphere clusters with a variable total sphere count using the

methods described in 3.3.2.1, where we set ρs = 0.01, rs = 0.5µm, ns = 2.5836+0i

and nb = 1+ 0i. We then use the package Dstat [128] to investigate the effect the

scaling behaviour of MSTM with respect to clock time and memory usage.

3.5 Validation

3.5.1 Diffraction Patterns with the Angular Spectrum Method

To evaluate our implementation of the Yang et al. angular spectrum approach we

use our MATLAB code to simulate the Frensel diffraction pattern of a plane wave

passing through a circular appature, then compare the result against another existing

numerical solution [129].

Specifically, we simulate Fresnel diffraction of light with a wavelength of

λ = 633nm through a circular aperture of radius 1mm that propagates 1m through a

vacuum. We compare our results against another numerical method for simulating

Frensel diffraction patterns - the two-step propagation method. To generate this

ground-truth we use code based on a MATLAB script written by Schmidt [130].
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3.5.2 Single Sphere Simulation

To vallidate MSTM and ensure we are using the software properly we simulate the

scattering of a plane wave incident on a single sphere of diameter 1µm. We then

compare this result against an analytical solution provided by a Lorenz-Mie theory

solver (code provided by my supervisor - Dr Munro).

In both simulations we set the wavelength λ = 633nm and the sphere refractive

index ns = 2.5836. We truncate the infinite Mie series at an order of 100, to deter-

mine if this is large enough we can apply the Wiscombe criterion to determine the

minimum truncation order L0 needed:

L0 = x+4.05x1/3 +2 (3.21)

where x is the particle size parameter, x = 2πr
λ

. For our sphere size and wavelength

we find N0 ≈ 9, so our value of 100 is more than enough.

3.5.3 Scattering Simulations in MSTM

If we wish to eventually use the T-Matrix method to study wavefront shaping then

we must have complete confidence that MSTM is able to correctly model whatever

domain we wish to simulate. To this end, we compare we wish to compare MSTM

dervied optical properties (µs,g) against both the theoretical values from Lorenz-

Mie theory, and the estimated µs and g from Inverse Adding Doubling (IAD) [117].

IAD is a method that can determine the µa,µs and g of a scattering medium by

propagating light into a disk-shaped sample of that medium with thickness δ and

making three measurements:

1. the reflectance, MR - which is a measure of the amount of light reflected by a

scattering medium normalised by the incident light.

2. the transmittance, MT - which is a measure of the amount of light that passes

through a scattering medium normalised by the light that would have passed

had the medium not existed.
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3. the unscattered transmittance, MU - which is a measure of the amount of light

that passes through a scattering medium without being scattered, normalised

by the light that would have passed without the medium.

IAD is commonly used to characterise the optical properties of a sample [131].

Experimentally, measurements of MR and MT are done using integrating spheres

placed either before of after the sample [117], athough we can make the same mea-

surements experimentally by recording the total light intensity on a plane directly

before or behind our simulated scattering medium (see Figure 3.2).

Measuring MU is often done by placing a detector some distance away from the

scattering medium directly in the path of the Gaussian beam. A aperture is used to

spatially filter the scattered light, such that only the unscattered light is detected. To

replicate this spatial filtering using our model we make multiple measurements of

the ballistic light at multiple distances from the scattering medium, averaging these

values together results in the intensity of only the unscattered light.

Figure 3.2: In Inverse Adding Doubling (IAD) measurements the reflectance, transmittance
and ballistic light can be used to calculate the optical properties of a scattering
medium. Using the T-Matrix method we simulate the scattering of an incident
Gaussian beam and record reflectance and transmittance by evaluating the near
field intensity directly on the planes shown. To measure ballistic light we aver-
age the measured intensity at multiple distances behind the scatterer to simulate
the effect of spatial filtering using an aperture.
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Note from Figure 3.2 that any light that escapes from the sides of the medium

would not be detected by either the reflectance or transmittance planes. This is an

experiential and computational limitation of IAD that can be minimised through

appropriate design of the scattering medium.

By minimising the size of the incident Gaussian beam, and maximising the di-

ameter of the scattering medium, we can reduce the amount of light escaping from

the sides of the medium. To this end we impose a size constraint on the domain:

the radius must be ×2 the thickness, δ . We also define the width of the incident

Gaussian beam to be 1/10th the domain radius to further minimise light escaping

from the sides.

3.6 Speckle Generation with the T-Matrix
We end by plotting the speckle patterns that are generated using the T-Matrix

method. We use the same size constrain defined in the previous section to gen-

erate scattering disks with a variable number of spheres, propagate a plane wave

(λ = 633nm) through them and evaluate the speckle statistics of the generated

speckle patterns.



Chapter 4

Results

4.1 The Angular Spectrum Method

4.1.1 Diffraction Patterns

To validate our implementation of the Yang et al. angular spectrum approach to

simulate scattering we use our code to simulate the Fresnel diffraction of a plane

wave through a circulate aperture and compare our result against the two-step solu-

tion found in Schmidt [130].

Specifically, we simulate the diffraction of light with wavelength λ = 633nm

through an aperture of 1µm radius that propagates a distance of 1m through a

vacuum. Our diffraction patterns can be found in Figure 4.1.

Figure 4.1: The Fresnel diffraction pattern of a plane wave with wavelength λ = 633nm
passing through an aperture of 1µm radius after propagating 1m. We com-
pare our angular spectrum based solution against a two-step solution found in
Schmidt [130] and find the two identical.
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Alternatively, it is possible to simulate the propagation of a plane wave that is

obstructed by a circular aperture of the same size. Doing so allows us to observe

the formation of an Arago spot (see Figure 4.2)

Figure 4.2: The Fresnel diffraction pattern of a plane wave with wavelength λ = 633nm
obstructed by an aperture of 1µm radius after propagating 1m. Like Figure 4.1,
we compare our angular spectrum based solution against a two-step solution
found in Schmidt [130] and find the two identical. Look closely to notice the
presence of an Arago spot at the centre of the circular shadows.

4.1.2 Binary Amplitude and Phase Modulation

We base our WFS angualr spectrum simulation on the model proposed by Yang

et al., who define the distance between FFT-iFFT pairs to be 20µm [6]. To simu-

late the desired 8mm of tissue means that 400 angular spectrum pairs are needed.

Each FFT-iFFT plane is dicretized into 2048×2048 points with a spacing of 5µm.

Using these measuremnts we can calculate the geometry of the entire modelling do-

main, which is a rectangular cuboid of dimensions 10.24mm×10.24mm×8.00mm.

Through this domain, we simulate the propagation of a flat-top circular aperture

beam of width 10mm. We spatially modulate this wave by applying a phase or

amplitude mask of 64× 64 elements on the incident beam, such that each SLM

element simultaneously modulates 32×32 elements of the FFT-iFFT plane.

We used a stepwise sequential algorithm that either modulated phase or ampli-

tude to generate a focus. Recall from Table 2.2 that this algorithm is by far the

slowest approach, but is guaranteed to find the optimal focus as every permuta-

tion for each element is tested sequentially. We generate our focus inside a 1mm

diameter spot at the centre of the imaging plane.
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Figure 4.3: Scattered field through 8mm of tissue prior to any wavefront modulation that
has been calculated using the angular spectrum method. Note how light inten-
sity is uniformly low.

Figure 4.4: Top row: binary amplitude and phase masks determined via the angular spec-
trum method. These maps can be used to spatially modulate the incident beam
to produce the focuses found on the bottom row. Note the difference in intensity
for the amplitude and phase modulation simulations - binary phase modulation
produces a brighter focus, but the background is also much brighter.
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Figure 4.3 shows us the scattered field before any attempt at wavefront shap-

ing, the light intensity is low across the entire imaging plane. As mentioned, the

stepwise sequential algorithm was used to produce the binary amplitude and phase

focuses found in Figure 4.4. Optimisation time took approximately 6 hours on Intel

Xeon Gold 6148 CPU.

We calculate the focus enhancement, η , by measuring the mean intensity inside

the focus, Ifocus, normalised by the mean intensity before any wavefront shaping,

Ibefore [14]:

η =
Ifocus

Ibefore
(4.1)

We also calculate the predicted enhancement, ηpred, from Equation 2.1 and the peak

to background ratio of our generated focus, ηPBR, which we define as the mean

intensity inside the focus, Ifocus, normalised by the background intensity, Ibackground

ηPBR =
Ifocus

Ibackground
(4.2)

the results for both can be found below in Table 4.1:

Table 4.1: Focus enhancement for binary amplitude or phase modulation simulated using
the angular spectrum method.

Modulation η ηpred ηPBR

Binary amplitude 10.54 652 22.85
Binary phase 410.9 1304 11.89

4.2 The T-Matrix Method

4.2.1 Generating Discrete Particle Models

Using the methods described in Section 3.3.2 we are able to use our MATLAB code

to generate various discrete particle models of scattering tissue for use in MSTM.

Both the confining geometry, density, and radius distribution of these multi-sphere

domains can be controlled, as shown in Figure 4.5.
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(a) 1000 spheres of diameter 1um and den-
sity 1% constrained automatically with
a bounding sphere.

(b) 1000 spheres of diameter 1um and den-
sity 1% constrained automatically with
a bounding cube

(c) 1000 spheres in a using a cylindrical
constraint. In this case we specify that
the radius has to be double the thickness
of the disk.

(d) A distribution can be used to define the
radii of the spheres. In this case, a log-
normal distribution create a 100 sphere
domain with a density of 10%.

Figure 4.5: Using the method described in Section 3.3.2 we have created code that can
generate discrete particle models for scattering calculations. The sphere radius,
density, refractive index, total sphere count and constraining geometry can all
be specified. Different distributions can be used to define sphere radii if desired.
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4.2.2 Scaling with MSTM

We generate multiple scattering domains up to and including 10,000 spheres using

a fixed particle size of rs = 1µm, ρs = 0.25% and ns = 2.5836 (see Figure 4.6). We

then use MSTM to simulate the scattering of an incident plane wave, using Dstat to

measure time taken and memory usage. We run MSTM in parallel over four cores

with a Intel Xeon Gold 6148 CPU on a system with 128 GB of RAM.

(a) 10 spheres. (b) 100 spheres.

(c) 1000 spheres. (d) 10000 spheres.

Figure 4.6: We create many sized multi-sphere domains upto 10000 spheres to investigate
scaling using the T-Matrix method.
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We plot clock time as a function of sphere number in Figure 4.7. We than use

polynomial regression to determine a criterion for estimating simulation time as a

function of sphere count:

simulation time = 1.53×10−6× sphere count2.81 (4.3)

Figure 4.7: The time taken to simulate differently sized scattering domains in MSTM (rs =
1µm, ρs = 0.25% and ns = 2.5836). MSTM was run in parallel over four cores.

Memory usage remained < 1GB at the start and for the majority of the compu-

tation - this time would have been spent performing translation calculations for the

VSWFs [110]. However, during T-Matrix calculation using the bi-conjugate gra-

dient method memory use peaked significantly to ≈ 16GB per core, but remained

steady even if sphere number and density were increased. The near field calculation

was done using our shared memory, OpenMP/MPI hybridised version of MSTM,

can as such memory usage remained constant regardless of core count.
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4.3 IAD Validation
Using the sphere parameters determined in Section 3.3.2.1 (rs = 0.5µm, ns =

2.5836, ρs = 0.0025) allows us to create a scattering medium where Lorenz-Mie

theory predicts µs = 93.98cm−1 and g = 0.4841 (see Figure 3.1). In a 10,000

sphere simulation the total domain volume comes to 2.0944mm2 (from Equation

3.20). In Figure 4.8 we show how we can use this information to determine the op-

timal domain size, in which the radius is 69.3361µm and the depth is 34.6681µm.

The domain generated using these parameters is shown in Figure 4.9.

Figure 4.8: Determining the optimum radius and depth for a disk shaped scatterer. We
find that using 10000 spheres of radius rs = 0.5µm, and density ρs = 0.0025)
produces a domain with a volume of 2.0944mm2. We then determine the ra-
dius and depth that maximise this volume while following the IAD imposed
constraint that the radius must be double the depth.

We then simulated the propagation of a Gaussian beam (λ = 633nm) along the

z-axis through this medium using MSTM. We measure intensity across the trans-

mittance and reflectance planes as shown in Figure 3.2. We also plot the profile

along the axis of beam propagation, be can use this to determine the ballistic light

component by averaging the intensity after the scattering plane. These planes and

the profile plot are found in Figure 4.10.
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Figure 4.9: The discrete particle model used for IAD simulation. 10000 spheres are con-
strained by a disk of radius 69.3361µm and depth 34.6681µm. Sphere density
is 0.25%.

Figure 4.10: The transmittance, reflectance and ballistic profile for a Gaussian beam inci-
dent on a scattering medium calculated using MSTM. The simulated discrete
particle model is shown in Figure 4.9. By normalising the intensity in the
transmittance and reflectance planes by the free propagation measurement we
can calculate MT and MR respectively. MU is determined by averaging the
intensity along the axis of beam propagation after the scattering medium (rep-
resented by the two dashed red lines). The white circles show the boundary of
the scattering disk.
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Figure 4.11: Near field intensity along the longitudinal plane for different scattering domains. Note that the proportion of light escaping from the sides
of the domain increase as sphere count increases.
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The accuracy of the IAD method is greatly diminished when light escape

from the sides of the medium, and as such is not detected by the transmittance or

reflectance planes [117]. To visualise this we create Figure 4.11 which shows the in-

tensity along the XZ plane for different sphere counts. Notice that as the number of

scatterers increases the scattering unsurprisingly becomes more pronounced. As a

consequence of this, more light escapes from the sides of the computational domain.

Despite this, we found that the optical properties determined with IAD match

both the values reported by MSTM and the theoretical values determined with

Lorenz-Mie theory. We repeat the experiment three times, using the same geo-

metrical constraints as Figure 4.10 but varying the position of these 10000 spheres

within the constraining disk. The results are reported in Table 4.2:

Table 4.2: Optical properties of our simulation as determined by Mie theory, IAD and
MSTM.

Optical property Mie Theory IAD MSTM

Scattering coefficient (cm−1) 93.98 87.11±3.31 89.56±4.94
Anisotropy 0.48 0.39+0.04 0.44±0.06

4.4 Speckle Generation
We conclude by using the T-Matrix method to image speckle patterns generated

by propagating a plane wave through the variably sized disk scatterers where the

sphere size, refractive index and density remain constant (rs = 0.5µm, ns = 2.5836,

ρs = 0.0025). We image the intensity of the scattered field on the plane directly

behind the scattering medium (see Figure 4.12). We find that a fully developed

speckle pattern develops after approximately 500 spheres, although to verify this

we plot the histogram of the 500 sphere solution and fit a Rayleigh distribution (see

Figure 4.13).
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Figure 4.12: Speckle patterns generated with MSTM. Note that a lower sphere count is
unable to scatter enough light to generate a fully developed speckle pattern
across the entire imaging plane.

Figure 4.13: Histogram plot of the speckle patern genearted using only 500 spheres. We fit
a Rayleigh distribution to validate that a fully developed speckle pattern has
formed. Note that solving the T-Matrix for a 500 sphere simulation takes < 1s
(see Figure 4.7).



Chapter 5

Discussion

5.1 The Angular Spectrum Method

5.1.1 Diffraction Patterns

To validate our angular spectrum model we simulated Fresnel diffraction patterns

of a plane wave passing through (Figure 4.1) or around (Figure 4.2) a circular

aperture, before comparing the results against an existing solution based on the

two-step method [130]. For both models we found that identical diffraction patterns

were generated. We were also able to observe from Figure 4.2 that an Arago spot

was generated - these bright spots are a direct consequence of Frensel diffraction

under certain condition [132]. The fact that we were able to replicate this well

know physical phenomena is further evidence that our angular spectrum code can

accurately simulate light propagation.

It is important to note that these results are not a thorough validation that our

angular spectrum code can simulate the scattering of light as Yang et al. have

proposed - only that our code has implemented the angular spectrum correctly. Un-

fortunately, Yang et al. have not made their code availible [6], and the uniqueness

of this angular spectrum approach to scattering makes validation difficult. In the

future, it may be necessary to characterise the speckle patterns generated using this

approach as a more rigorous method of validation.
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5.1.2 Binary Amplitude and Phase Modulation

In Figure 4.3 we show the scattered field generated by propagating a circular aper-

ture beam through 400 FFT-iFFT layers representing 8mm of scattering tissue. We

use a stepwise sequential algorithm to optimise binary amplitude and phase maps

that produce the optical foci seen in Figure 4.4.

One downside to this method is that the numerous Fourier and inverse Fourier

transforms still take a lot of time compared to the simpler random transmission

matrices currently used for algorithm comparision[20]. It took use around six hours

to generate each focus seen in Figure 4.4 using only using binary modulation, com-

putational time would increase linearly as we introduced more phase steps for each

element. However, this time would decrease significantly if a faster algorithm was

used (see Table 2.2 for examples).

In Table 4.1 we record the maximum focus enhancements achieved with both

methods. Unfortunately, neither approach was able to match the theoretical value

derived from Equation 2.1. This suggests, that although the angular spectrum

method can be used to simulate a focus being generated through a scattering tis-

sue, it does not do this in a physically realistic manner. Recall that the scattering

properties of the angular specctrum medium are defined using a refractive index

standard deviation, and that this deviation is determined by estimating the transport

mean free path of the medium. As previously mentioned, the transport mean free

path is insufficient in fully characterising the scattering properties of tissue, and

as such it is impossible to fully understand exactly what material this method is

actually studing. For example, a high anisotropy, low scattering coefficient and low

anisotropy, high scattering coefficient material would be treated identically in this

model.

This may seem like an insurmountable challenge that prevents this angular spectrum

approach from being adopted to simulate wavefront shaping. However, a rigourous
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first-principles approach to understanding light propagation is not the goal of this

model - instead it can be used to study the impact of various confounding factors

such as noise on WFS, as Yang et al. have done.

To this end we also notice an interesting phenomenon when looking at Table 4.1

- even though binary amplitude modulation produces a much dimmer focus than

phase modulation, the light across the imaging plane is much more concentrated

inside this focus, with ηPBR = 22.85 > 11.89. These preliminary results suggest

that binary amplitude modulation might be a better fit for WFS applications that aim

to improve contrast (e.g. light sheet fluorescent microscopy) as the intenstiy can be

highly localised, while phase modulation might be more appropriate if deep tissue

imaging is the goal (e.g. photoacoustic microscopy), where the main limitation is

light delivery at depth.

5.2 The T-Matrix Method

5.2.1 Scaling with MSTM

Intuitively, it makes sense that the MSTM, a matrix based method, would scale

nonlinearly as the size of a square matrix grows quadratically based on the number

of elements. Note that our regression based formula for estimating simulation time

is not generalisable to other domain geometries. The variable that has the greatest

impact on computational time is not actually the number of spheres, Ns, in the

simulation, but the size parameter, x. The number of linear equations that must

be solved can be determined by [110]:

2NsLs(Ls +2) (5.1)

where, as previously mentioned, Ls is the truncation order of the VSWF expan-

sion that is determined entirely by the size parameter according to the Wiscombe

criterion (Equation 3.21). As such, the T-Matrix method is much more suited to

simulating multiple small particles, on the order of 1µm for which L0 is low.
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Fortunately, memory usage remained low (< 1GB per thread) during the most

computationally taxing part of the simulation - the translations of the VSWF about

the origin of each sphere relative to all other spheres [110]. However, memory

usage did spike during the T-Matrix calculation to16GB, suggesting there is room

for further parallelisation here.

Fortunately, this T-Matrix only needs to be determined once, from then on we

can use of hybrid OpenMP/MPI MSTM variant to repeatedly evaluate the near field

for various incident beams using a shared memory pool.

5.3 IAD Validation

Using IAD to determine the optical properties of a scattering medium becomes

less reliable the more light escapes detection. Consequently, IAD works best when

the Gaussian beam width is minimised and the radius of the scattering domain is

maximised. Unfortunately, these geometrical constraints run in opposition to the

domains we wish to study using MSTM - by increasing the radius of the scattering

domain you non-linearly decrease the depth (see Figure 4.8), and we wish to image

WFS in deep tissue. There is also a limitation on how thin a Gaussian beam can

be before the approximation used for the incident VSWF expansion fails (Kω0 ≥ 5

where K is the wave number and ω0 the Gaussian beam width [110]).

Fortunately, unlike the angular spectrum method, the T-Matrix approach is a rig-

orous, first-principles approach to simulating scattering. The macroscale optical

properties of the medium are explicitly defined by the refractive index, radius and

density of scatterers in the medium. This means the same values of µs and g

measured and validated for an IAD disk like geometry would be valid for other

constraining geometries (see Figure 4.5 for examples) so long as the scatterer prop-

erties remained unchanged.
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From Table 4.2 we find generally good agreement with the measured optical prop-

erties of our medium as determined analytically with Lorenz-Mie theory, explicitly

recorded from MSTM, or calculated using IAD. The MSTM value for the scattering

coefficient matched the Mie theory and IAD values with < 5.5% difference. The

variation between the anisotropy values was higher with at most a 18% difference

between the analytical value and those determined with IAD. To investigate this

difference, we plot the near field across the X ,Z plane in Figure 4.11.

We find that a 10000 sphere simulation heavily scatters the incident Gaussian

beam, leading to a higher proportion of light escaping through the sides of the

scattering domain and not being detected by either the transmittance or reflectance

planes. There are three possible solutions to minimise the proportion of escaping

light, and improve this result:

• Decrease the Gaussian beam width - this increases the distance between the

edge of the incident beam and the medium boundary such that less light is

lost over a given domain depth. Unfortunately there is a limit on how thin the

beam width can be made.

• Increase the radius of the disk - increasing the radius increases the distance

light must travel to escape. Unfortunately, it also decreases the depth, such

that there will be less scatterers directly in the path of the beam. This would

increase the per sphere impact on scattering, making our measurement of µs

and g dependent on the spatial position of individual spheres rather than the

statistical description of a multi-sphere aggregate.

• Increase both the radius and depth - the most obvious solution is achievable

by just simulating more spheres, but the non-linear scaling of the T-Matrix

method make this suggestion prohibitively costly above 10000 spheres.

Rather than trying to improve the agrement between the three methods for only this

given discrete particle model it may help to think of this method as a validation

procedure that can come before further T-Matrix based simulation. For example,
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we can use Lorenz-Mie theory to design a discrete particle model with a targeted

scattering coefficient and anisotropy (see Section 3.3.2). We can then arrange these

spheres to form a disk-like geometry for vallidation with IAD. If these results match

those given directly by MSTM we can change the domain to a more convenient

geometry without worry as the underlying optical properties are only dependent on

scatterer refractive index, size and density which would remain constant.

5.4 Speckle Generation
We finish by imaging the speckle patterns generated using the T-Matrix method in

Figure 4.12, finding that a fully developed speckle can be formed using only 500

spheres. We prove that this speckle is fully developed by noting that the intensity

histogram closely follows a Rayleigh distribution 4.13. T-Matrix methods are very

efficient at generating fully developed speckle patterns in very little time (< 1s for

a 500 sphere simulation) and as such would be a very good technique to investigate

the memory effect computationally.



Chapter 6

Conclusion

If we only consider the biomedical applications, it is clear that wavefront shaping

is an incredibly promising (albeit nascent) technique that has the potential to enable

high contrast imaging imaging at greater depths than currently possible. However,

the inability to directly measure the scattered field inside a turbid medium, and the

limitations of experimental investigation leave many unanswered questions. How

exactly does shaped light propagate? What are the limits of the optical memory

effect? How deep can we actually focus light? We propose that computational

modelling will be able to answer many of these questions.

However, at the time of writing no researcher has proposed a rigorous compu-

tational model able to simulate wavefront shaping through deep tissue. Existing

models either fail to properly characterise the optical properties of tissue (the Yang

et al. wavefront shaping approach [6]) or are too computationally expensive for

deep tissue simulation (the Kim et al. FDTD OCT simulation [50]).

We undertake a review of promising computational modelling techniques and

evaluate their suitability for modelling wavefront shaping. We suggest that two

models may be the most appropriate for different modelling objectives: the Yang et

al. angular spectrum approach and Waterman’s T-Matrix method [109].

As we have discussed previously, using the angular spectrum method to simu-
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late scattering has one major disadvantage: it is impossible to fully characterise the

optical properties of the simulated tissue using only the transport mean free path.

Nevertheless the speed of this method make it an attractive aproach to evaluating

different optimisation algorithms, modulation methods. The model can also be

used to study the impact different experimental variables have on efficient wave-

front shaping, e.g. SLM geometry, guidestar size or even the impact of noise [6].

Further work is absolutely needed on the angular spectrum model before all this is

possible. Most importantly, there must be another way to evaluate the optical prop-

erties of the model that does not rely on the transport mean free path. Studying the

generated speckle pattens may be one way to understand how scattering is actually

simulated with this approach.

In contrast, the T-Matrix method is much slower, and scaling limitations will likely

prevent it from ever modelling centimetre-scale tissue. The method also requires

that the incident field can be analytically expanded as VSWFs, making represen-

tation of arbitrary incident waves an ongoing problem [121]. However, being a

discrete particle based computational technique allows the T-Matrix method to

fully characterise the macro-scale optical properties of tissue through proper design

of multi-sphere scattering domains. Scatterer refractive index, size and density can

all be controlled to produce tissue models with a desired µa, µs and g and radius

distribution can even be used to further control these optical properties [88]. This

means that the T-Matrix approach is the most appropriate computational method for

visualising the field inside a physically realistic scattering medium, and would be

of great benefit for research into wavefront shaping or the optical memory effect.

We believe that MSTM has been sufficiently validated such that it may be used

to further study wavefront shaping. The ability to simulate various incident beams

using only a single T-Matrix solution makes this method well suited to this purpose.

It would now be possible.
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