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Abstract

Determining cell sti�ness has become a routine practice in the study of mechan-
otransduction and cellular modelling, with the most popular method currently
being atomic force microscopy (AFM). Unfortunately, AFM is limited by the for-
mation of a water meniscus, the need for specialised equipment, and the inability
to process multiple cells simultaneously.

This report derives the governing equations behind a new, potential alternative
to AFM. A cell is modelled as a poroelastic material encapsulated in a partially
permeable membrane, across which we can use a hypo/hyperosmotic solution to
generate an osmotic gradient. The resulting �ux of water causes the cells to swell
or shrink, with the degree of deformation being dependent on the cell's sti�ness,
Poisson's ratio, and permeability.

The governing partial di�erential equation was solved using the Laplace transform
to create a solvable ordinary di�erential equation, following which the Cauchy
residue theorem was used to return to the time domain. For validation we also
use Talbot's method to numerically compute the inverse Laplace transform and
create a separate simulation of swelling using ABAQUS.

Dimensionless solutions of pore pressure and displacement as a function of ra-
dius and time are provided. Critically, the surface settlement of a swelling cell
has been calculated � such swelling can easily be recorded in vitro on any stan-
dard microscope and �t against the provided model to calculate the mechanical
properties of the cell in question.
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1 List of Symbols

Symbol Name Units

R Radius m
R0 Initial radius m
R∗ Dimensionless radius -
θ Polar angle rad
ϕ Azimuthal angle rad
t Time s
t∗ Dimensionless time -
σ Stress Pa
σRR Radial stress Pa
σθθ = σϕϕ Tangential stress Pa
σij Cauchy stress tensor Pa
e Total volumetric strain -
eij In�tesimal strain tensor -
eθ = eϕ Tangential strain -
u Displacement m
uR Radial displacement m
uθ = uϕ Tangential displacement m
p Pore pressure Pa
P0 Initial pressure Pa
s Complex frequency -
s∗ Dimensionless complex frequency -
λ First Lam\'{e} constant Pa
λu Undrained �rst Lam\'{e} constant Pa
µ Second Lam\'{e} constant Pa
ζ Volumetric variation in �uid content -
A,A′ Unde�ned temporary constants -
M Biot modulus Pa
α Biot e�ective stress coe�cient -
G Shear modulus Pa
ν Poisson's ratio -
η Poroelastic stress coe�cient -
c Consolidation coe�cient -
S Storage coe�cient -
B Skempton pore pressure coe�cient -
κ Permeability m2

Π Osmotic Pressure Pa
i van't Ho� factor -
C Molar concentration mol/L
R Ideal gas constant JK−1mol−1

T Temperature K

3



2 List of Tables

1 Theoretical and Practical Applications of Cryer's Problem . . . . . . . 9

3 List of Figures

1 The osmotically induced deformatio of a spherical cell. . . . . . . . . . 11
2 Roots of g(s) (Mode 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Roots of g(s) (Mode 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Proof of convergence in ABAQUS by observaation of the Mandel-Cryer

e�ect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Pore pressure in a consolidating sphere under Mode 1 loading. . . . . . 29
6 Pore pressure at the center of a consolidating sphere under Mode 1 loading. 30
7 Pore pressure in a consolidating sphere under Mode 2 loading. . . . . . 31
8 Pore pressure at the center of a consolidating sphere under Mode 2 loading. 32
9 Pore pressure at the center of a consolidating sphere under Mode 3 loading. 32
10 Displacement in a consolidating sphere under Mode 1 loading. . . . . . 33
11 Displacement in a consolidating sphere under Mode 2 loading. . . . . . 34
12 Displacement at the surface of a consolidating sphere under Mode 2 loading. 36

4



4 Introduction

4.1 Measuring Cell Sti�ness

Most biological tissues have an inherently hierarchical structure [1]: macroscale mechan-
ical properties are largely governed by microscale cells and the extracellular matrix they
produce. Mechanically aberrant biological tissue is both an indication of, and cause of
many diseases [2] - speci�cally, increased tissue sti�ness can lead to polycyctic kidney
disease [3], cancer metastasis [4] and other a�ictions (see review by Jaalouk and Lam-
merding [5]). It is unsurprising that researchers are motivated to study the mechanics
of individual cells, and as such many di�erent techniques have arisen to allow for that.

Atomic force microscopy, invented by Bennig in 1986 [6], is the most popular method
for -quite literally- probing the mechanical properties of cells [7]. AFM was originally
invented as an alternative to optical or current based (e.g. electron microscopy) imag-
ing techniques [8]; the general principle behind AFM is that a nanoscale tip on a thin
cantilever trawls across the surface of a sample, moving up and down over any corre-
sponding peaks and troughs, recording the surface topography [9].

Aside from its imaging mode, AFM has been adapted to quantify the sti�ness of cells
[10]. Now the cantilever tip presses down into a sample, with the recorded displacement
of the cantilever head being determined by interactions between tip and cell surface [11].
Mathematical models speci�c to tip geometry are then used quantify mechanical prop-
erties, such as sti�ness, based on measured parameters (e.g. the Hertz model is used
for spherical tips [12] while the Sneddon model is used for cone punches [13]).

Note that these mathematical models underlying AFM are based on critical assump-
tions that may not always be valid. For the Hertz model alone, the spherical tip head
must both be much larger that the indentation depth [14] and not be signi�cantly
harder that the sample [15]. This means that for a inhomogeneous sample there may
only be speci�c regions where the model is valid.

AFM is very slow compared to other imaging techniques - a possible limitation when
applied to cells which tend to relax and spread over time. Much like the Rayleigh
criterion limits optical resolution, the undampened vibrations of a high-speed scanning
probe introduce a scan speed limit on AFM [16]. Advances in the last two decades
have pushed this limit, high resonance frequency cantilevers [17], microresonators [18]
and ultra-high speed imaging devices [19] have seen high-speed AFM �come of age� [20].

Unfortunately these proposed solutions are only imaging a small region of a relatively
larger specimen - AFM must scan through these local regions in series to capture a
complete working sti�ness map of a cell. Parallelisation has been attempted to over-
come this problem [21, 22], however that just exacerbates another limitation with AFM
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- its prohibitive cost.

AFM requires expensive equipment, prolonged set-up and meticulous calibration. Mechan-
otransduction remains a nascent �eld, with many researches attempting to pique greater
interest in cellular mechanics among the wider biologist community [23] - AFM remains
a limitation in achieving that aim. An ideal alternative would use materials and equip-
ment already readily available in most labs.

Existing alternatives to AFM include optical and magnetic tweezers, elastomeric mi-
croposts and integrated strain arrays. Each will be brie�y addressed below.

Optical tweezers are a versatile method of assessing sti�ness, able to exert piconew-
ton force on nano or micro sized particles and measure the subsequent displacement
[24]. A silica bead is attached to the surface of a cell [25], a focused beam of laser
light creates a �trap� on the dielectric bead, drawing it the the centre of the trap [26].
The actual displacement of the bead is dependent on the mechanical properties of the
cell. Optical tweezers have been successfully used not just to determine linear elastic
mechanical properties but also non-linear and viscoelastic properties of cells [27]. Un-
fortunately it has been discovered that the laser light used to optically trap particles
can heat the cell, potentially damaging it [28]. Furthermore, optical tweezers are non-
speci�c, they trap any dielectric particle [24] - even cell organelles have been trapped
[29].

Magnetic tweezers are similar to optical tweezers, except a magnetic �eld is used to
exert a force on paramagnetic beads applied to the surface of the cell. Magnetic tweez-
ers are capable of exerting nanonewton forces on cells, and (unlike optical tweezers) can
apply torque by rotation of the magnetic �eld [24]. However it is much more di�cult
to produce a focused and signi�cantly powerful magnetic �eld as oppossed to optical
trap techniques [24].

Mechanical sensing using elastomeric microposts attach cells onto the surface of an
array of micron sized silicon pillars. A vacuum is used to apply stretch forces to the
pillars, deforming the attached cell with the degree of deformation being proportional
to cell sti�ness [30]. Unfortunately cells do not attach ideally to pillars, integrin clus-
tering often occurs that can disturb force transmission [31].

Integrated strain arrays function by depositing cells on a biocompatible polymer mem-
brane, which can then be stretched over a polymeric post to strain the attached cell
[32]. Unlike the elastomeric micropost method, integrated strain arrays present a �at
surface over which cells can adhere. However, quanti�cation of cellular mechanical
properties has not been achieved with this technique, instead it is just method to apply
a controllable amount of strain during cell culture.
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Regarding these methods of cell sti�ness measurement as a whole it becomes clear
there are many common disadvantages. As such we outline our requirements for a new
alternative method that motivate the remainder of the report.

The proposed method should:

1. be capable of quantifying cellular mechanical properties.

2. require equipment typically found in most labs.

3. be quick.

4. assess several cells in tandem.

5. not damage the cell.

6. not allow for cell adhesion.

4.2 Osmotically Induced Deformation of a Spherical Cell

In this report we propose modelling a cell as a linear elastic poroelastic sphere - a
geometry that is easily achievable following trypsinization [33]. Like with most other
quanti�cation methods, we then apply a controllable force to the cell and measure the
resultant displacement - in this case measuring the change in radius of the cell through
a standard microscope. The degree of deformation would then be inversely proportional
to the sti�ness of the cell.

Poroelastic materials consist of a porous solid phase (representing the cytoskeleton,
organelles, macromolecules etc.) and a interstitial �uid phase (the cytosol) that sat-
urates the material [34]. Although the two phases interact, they are ultimately their
own materials, with separate mechanical properties. In poroelasticity, loads can be
independently applied directly to the solid skeleton as stress or on the �uid phase as
pore pressure.

Cells themselves can be reliably considered as poroelastic materials, in 2013 Moeendar-
bary et al. used a poroelastic model of cytoplasm to successfully model cell rheology
[34]. Poroelastic modelling has also been used to model cell crawling [35] and stress
relaxation in chondrocytes [36].

This thesis proposes three di�erent methods for loading the cells, and presents the
governing equations behind each.

The �rst loading method, referred to as �Mode 1�, involves directly loading the solid
skeleton. A mechanical force is applied uniformly across the surface of the sphere with
�uid being free to drain through this surface. This mode has a special name, known as
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�Cryer's problem� and has been analytically solved for over half a decade [37].

In the second loading mode there is no strain applied to the solid skeleton. Instead
we apply a pore pressure to the surface of the cell, and measure the subsequent swelling
or shrinkage. This pore pressure can either be applied hydrostatically or by generating
an osmotic gradient across a partially permeable membrane (in this case the phospho-
lipid bilayer). We recommend generating this force osmotically as no special equipment
is needed to load the cell - it is trivial to prepare a hypoosmotic or hyperosmotic solu-
tion in any lab. While the fundamental constitutive equations of poroelasticity remain
unchanged from Cryer's problem the change in boundary conditions leads to a com-
pletely unique solution that has been derived in this thesis.

The �nal loading mode involves loading a cell using �uid pressure, both the solid skele-
ton and interstitial �uid are loaded simultaneously. This loading mode is merely a
superposition of the two previous loading modes.

In this thesis we derive the analytical solution to the di�erent loading modes and present
graphs of the expected dimensionless change in pore pressure and displacement as a
function of radial distance and time. For validation, we compare the analytical solution
with a numerical solution and computational simulation.

5 Consolidation of a Poroelastic Sphere

5.1 Cryer's Problem

A thoroughly studied problem in poroelasticity is that of one-dimensional consolidation
- a soil layer resting on an impermeable base is compressed by a load, with �uid able
to freely drain from the surface of the soil. The evolving pore pressure, stresses and
strains within the soil were solved analytically by Terzhagi in a series of six papers [38],
leading to the emergence of an entire new �eld of engineering - geotechnical engineering
[39]. Within this �eld the solution is ubiquitous [38], Terzaghi's work is regularly used
by practising geotechncial engineers and forms a key part of any undergraduate course.
Moreover, it is regularly used for validating new numerical techniques [40].

Terzhagi's problem has also been solved in spherical coordinates under the assumption
of spherical symmetry by Cryer [37]. A load is applied on the surface of a poroelastic
sphere with free draining possible. Although less well known than Terzaghi's original
work, Cryer's solution has seen both theoretical and practical applications (we focus on
speci�cally biological applications) that are brie�y addressed in Table 1.
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Table 1: Theoretical and Practical Applications of Cryer's Problem

Theoretical Applications Practical Applications (Biological)

� Cryer originally only solved for pore
pressure at the centre of the sphere and
the surface settlement. Comprehensive
solutions of pore pressure, stress and strain
across the entire radius were solved 30
years layer by Mason et al. [41]

� Nowinski and Davis expand on Cryer's
solution to create an analytical model of
the human skull modelled as a poroelastic
shell. They stress their model and �nd a
good match with existing rheological
models of human bone. [42].

� Both Cryer and Mason consider the
�uid and solid phases as incompressible.
The general solution is presented in
textbooks by Cheng [43] and Verruijt [44].

� Islam and Righetti have used Cryer's
work to create a model of creep
compression of a tumour compressed
between two plates [45].

� Cryer's solution has recently been
expanded to encompass N-layer spheres
with di�erent porosities and permeabilities
for each layer [46].
� Gibson et al. have studied Cryer's
problem under large displacements, noting
that the Mandel-Cryer e�ect still occurs
with large strains [47].

5.2 Problem De�nition

5.2.1 Loading By Stress

The governing equations describing poroelastic consolidation are formulated as di�er-
ential equations. As such a set of boundary conditions are needed to �nd the solution.
In Cryer's problem (mode 1) we begin by de�ning a sphere with radius R0. In this
report we wish to solve for pore pressure (p) and displacement (u) as a function of both
time (t) and radius (R) where 0 ≤ t < ∞ and 0 ≤ R ≤ R0. As previously mentioned
we know that a pressure (P0) is applied at the surface of the sphere, as such the radial
stress (σRR) at this location must be equal to this pressure. Furthermore pore pres-
sure must be 0 so that �uid can freely drain through the surface of the sphere. Stated
another way we reach our �rst set of boundary conditions:

σRR = −P0H(t− 0),

p = 0, (1)

at R = R0

Where H(t − 0) is the Heaviside step function, ensuring that there is no load applied
when t < 0 and once t > 0 the load is both instantaneously applied and continuous.
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Another set of boundary conditions exist that de�ne displacement and pore pressure at
the centre of the sphere, when R = 0. As the problem is axisymmetric there can be no
deformation at the centre (uR = 0). Similarly there is no change in pore pressure as a
function of radius ( ∂p

∂R
= 0). We can state this mathematically as:

uR = 0,

∂p

∂R
= 0, (2)

at R = 0

5.2.2 Loading by Pore Pressure

It is easy to imagine how stress may be applied to a poroelastic material in Terzhagi's
problem, however the spherical geometry of Cryer's problem is more challenging as load
must be applied evenly across the entire surface of the sphere.

As previously mentioned we could also deform the poroelastic cell by loading the in-
terstitial �uid. Now the load is applied not on the the solid skeleton (σRR = 0), but
instead as pore pressure at the surface of sphere (p = P0H(t−0)). While our second set
of boundary conditions remains unchanged (Equation 2), the new loading necessitates
a change in our �rst set of previously de�ned boundary conditions (see Equation 1):

σRR = 0,

p = P0H(t− 0), (3)

at R = R0

This pore pressure can be applied either hydrostatically or via osmosis if a partially
permeable membrane is present. Using osmosis to generate pore pressure on the surface
of the sphere is particularly attractive as an appropriate sample just needs to be placed
in an osmotic medium.

The major application of this method, and the motivation of this thesis, would be
the ability to model the osmotically induced deformation of cells using this method. A
spherical cell (achievable via trypsinization) could be submerged in an easily prepared
ionic solution, the osmotically induced �ux of water across the partially permeable
phospholipid bilayer membrane would cause the cell to swell or shrink based on solu-
tion tonicity and cell mechanical properties. The geometry of such a problem is show
in Figure 1.

The osmotic pressure (Π) applied on a cell by a hypoosmotic or hyperosmotic medium
can be trivially calculated from van't Ho�'s equation of osmotic pressure in a dilute
solution [43]:

Π = iCRT (4)
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Where i is the van't Ho� factor, C is molar concentration, R is the ideal gas constant,
and T is temperature.

Alternatively, if a strong hyperosmotic medium is required an aqueous solution of highly
hydrophilic polyethylene glycol (PEG) can be prepared. Experimentally derived formu-
lae to calculate the osmotic pressures of various PEG solutions have been found using
vapour pressure de�cit osmometry [48] and sedimentation equilibrium ultracentrifuga-
tion [49].

In this report we derive solutions for how pore pressure and strain change as a function
of radius and time for both loading modes and present the ultimate superposition that
describes �uid pressure loading.

Figure 1: The osmotically induced deformation of a spherical cell Ωi. A spherical
trypsinized cell of radius R0 is submerged in a a hypotonic or hypertonic medium Ωe.
This generates a pore pressure of P0 at the surface of the sphere, causing the cell to
swell or shrink. In this report we derive the equations governing this deformation, and
the resulting change in pore pressure.
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5.3 Governing Equation

The governing equations of poroelasticity are constitutive equations that link dynamic
quantities (e.g. stresses) to kinematic quantities (e.g. strains) [43]. To formulate this
relationship we begin by considering the well known stress-strain constitutive equation
for a isotropic linear elastic material [50]:

σij = λδije+ 2µeij (5)

Where σij is the Cauchy stress tensor, eij is the in�nitesimal strain tensor, e is the
total volumetric strain, δij is the Kronecker delta and λ and µ are the �rst and second
Lamé parameters respectively. However, poroelastic materials consist of a porous solid
phase and a �uid medium. As such the stress tensor is not just dependent on the strain
tensor but also on the volumetric variation in �uid content ζ. Intuitively, this can be
easily understood: if we compress a saturated porous material some of the �uid will
drain during compression, and consequently the mechanical properties of the material
will change. Equation 5 is now modi�ed to incorporate this new term [43]:

σij = λuδije+ 2µeij − Aδijζ (6)

Where λ now becomes speci�cally the undrained �rst Lamé parameter, λu, and A is a
new constant - just like some materials may be sti�er than others, others may be more
freely drained under compression (e.g. sand vs clay).

For now we have only considered a single dynamic quantity - the stresses on the solid
grains. However a poroelastic material undergoing deformation also experiences a load
applied to the �uid phase - a pore pressure p [43]:

p = −A′e+Mζ (7)

Where we de�ne two new material constants, A′ and M .

We can verify Equations 6 and 7 by checking they satisfy the Maxwell-Betti recip-
rocal work theorem. A comprehensive description of the process is provided by Cheng
[43], but ultimately it is proven that A = A′ and as such both can be replaced by a
single material constant. However it has been found more convenient to instead de�ne
A and A′ as a product of M and the new constant α. We now have two Equations
containing four material constants that are able to describe linearly elastic and isotropic
poroelastic materials [43]:

σij = λuδije+ 2µeij − αMδijζ (8)

p = M (−αe+ ζ) (9)

The two material constant, M and α are known the Biot modulus and the Biot ef-
fective stress coe�cient respectively. It can be convenient to express the poroelastic
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constitutive equations as a single equation. We can do so by substituting Equation 9
into Equation 8 to �nd that [43]:

σij = λδije+ 2Geij − αδijp (10)

We de�ne λ as the drained �rst Lamé parameter:

λ = λu − α2M (11)

Our cell is spherical, and consequently all governing equations are formulated in a spher-
ical coordinate system (R, θ, ϕ), where R is the radial distance, θ is the polar angle and
ϕ the azimuthal angle. As our geometry is assumed to be spherically symmetrical vari-
ables are functions of radial distance and time only.

Our poroelastic sphere does not experience an acceleration, and as such can be consid-
ered as a statics problem. Therefore it must satisfy the equilibrium equation stating
that there are no net forces: ∑

F = 0 (12)

The equilibrium equations in spherical coordinates has been derived as [43]:

∂σRR
∂R

+
1

R

∂σRθ
θ

+
1

R sin θ

∂σRϕ
∂ϕ

+
1

R
(2σRR − σθθ − σϕϕ + σRθ cot θ) = 0 (13)

∂σRθ
∂R

+
1

R

∂σθθ
θ

+
1

R sin θ

∂σθϕ
∂ϕ

+
1

R
[(σθθ − σϕϕ) cot θ + 3σRθ] = 0 (14)

∂σRϕ
∂R

+
1

R

∂σθϕ
θ

+
1

R sin θ

∂σϕϕ
∂ϕ

+
1

R
(2σθϕ cot θ + 3σRϕ) = 0 (15)

Owing to spherical symmetry many terms are eliminated, and the equilibrium equations
instead reduce to just:

∂σRR
∂R

+
2σRR − σθθ − σϕϕ

R
= 0 (16)

σθθ = σϕϕ (17)

And the dervied stress-strain relationship (Equation 10) becomes:

σRR = λe+ 2µeRR − αp (18)

σϕϕ = λe+ 2µeϕϕ − αp (19)

Where owing to spherical symmetry the various strains now become [43]:

eRR =
∂uR
∂R

(20)

eϕϕ = eθθ =
uR
R

(21)

e =
∂uR
∂R

+ 2
uR
R

=
1

R2

∂R2uR
∂R

(22)
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Experimentally derived relationships between the Lamé parameters and more univer-
sally understood engineering constants (e.g. elastic, shear and bulk moduli) have been
found [51]. As these engineering constants are more widely used by researchers we re-
de�ne our parameters in terms of shear modulus (G) and Poisson's ratio (v) using the
following conversions [43]:

λ =
2Gv

1− 2v
µ = G (23)

Consequently the constitutive equations now become:

σRR =
2Gv

1− 2v
e+ 2GeRR − αp (24)

σϕϕ =
2Gv

1− 2v
e+ 2Geϕϕ − α (25)

Note that although this thesis continues by using the shear modulus and Poisson's ratio,
conversions exist for the elastic and bulk moduli [51]. Continuing on, Cheng substitutes
in the stress-strain constitutive equations into the equilibrium equation to obtain the
Navier equation [43]:

2G(1− v)

1− 2v

(
∂2uR
∂R2

+
2

R

∂uR
∂R
− 2uR

R2

)
− α ∂p

∂R
(26)

Where we have de�ned one of many new poroelastic constants, the poroelastic stress
coe�cient, η [52]:

η =
1− 2v

2(1− v)
(27)

Much like the mechanical parameters characterising linear elasticity, conversion equa-
tions exist that allow researchers to restate any derived equation in terms of other
poroelastic constants. Using the poroelastic stress coe�cient is convenient however, as
it allows us to rearrange Equation 26:

∂e

∂R
=

∂

∂R

(
1

R2

∂R2uR
∂R

)
=
η

G

∂p

∂R
(28)

We can now integrate with respect to R to �nd [43]:

e =
η

G
p+ 3A1(t) (29)

With A1 being a new integration constant. We can integrate once more to �nd the
solution for the strains [43]:

uR(R, t) =
η

G

1

R2

∫
R2p(R, t)dR + A1(t)R +

A2(t)

R2
(30)
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Where A2 is again another integration constant. These integration constants are found
using the boundary conditions speci�c to each loading mode as will be seen later. We
can substitute Equation 30 into the constitutive equations (Eq 18 & 19) to �nd the
stress solutions [43]:

σRR = −4η
1

R3

∫
R2p(R, t)dR +

2G(1 + v)

1− 2v
A1(t)−

4G

R3
A2(t) (31)

σϕϕ = 2η
1

R3

∫
R2p(R, t)dR− 2ηp+

2G(1 + v)

1− 2v
A1(t)−

2G

R3
A2(t) (32)

Deriving a solution for radial and tangential stresses may seem unintuitive at �rst con-
sidering we are solving for pore pressure and displacement, however they are needed to
eliminate certain integration constants as will become apparent later.

Deriving the governing equation for pore pressure is more involved and has not been
comprehensively covered for brevity - once again the full derivation is provided by Cheng
[43]. Stated brie�y, it requires noticing that the displacement �eld under axisymmetric
boundary conditions is irrotational. This allows Cheng to utilize a previously derived
analytical solution for the pressure di�usion equation [43]:

∂p

∂t
− c∇2p = − η(1− v)

GS(1 + v)

d

dt
(σkk + 4ηp) (33)

Where c and S are new poroelastic constants called the consolidation coe�cient and
storage coe�cient respectively.

He continues by noting that the term σkk + 4ηp is only a function of time. There-
fore we can substitute in our previously derived stress solutions (Equations 31 and
32):

σkk + 4ηp = σRR + 2σϕϕ + 4ηp =
6G(1 + v)

1− 2v
A1(t) (34)

We can substitute the above into the equation for pressure (Equation 33) to �nd:

∂p

∂t
− c 1

R2

∂

∂R

(
R2 ∂p

∂R

)
= −3α

S

dA1(t)

dt
(35)

Which is a second-order partial di�erential equation governing pore pressure as a func-
tion of time and radius. Note that Equation 35 is just the di�usion equation in spher-
ical coordinates with an extra term representing the integration constant, A1. While
we could solve this equation numerically using discretization techniques such as the
�nite di�erence method, such methods are often either conditionally or unconditionally
unstable when applied to certain partial di�erential equations [53].
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6 Loading By Stress

6.1 Laplace Transform

Instead we wish to solve Equations 30 and 35 analytically. To do so we begin by pre-
forming a Laplace transform of the partial di�erential equation describing the change in
pressure during consolidation (Equation 35), decomposing it into the following second-
order non-homogeneous ordinary di�erential equation (ODE) [43]:

1

R2

∂

∂R

(
R2 ∂p̃

∂R

)
− s

c
p̃ =

3αs

κ
Ã1(s) (36)

Where κ is permeability, which has the following relationship with the consolidation
and storage coe�cients: [43]

κ = cS (37)

The solution of this ODE is found to be [43]:

p̃ = C1

sinh
√
R2s/c

R
+ C2

cosh
√
R2s/c

R
− 3α

S
Ã1(s) (38)

Note from the boundary conditions that the solution must be bounded at R = 0, as such
C2 must equal 0. If our geometry was instead a hollow sphere the complete solution is
provided by Nowinski and David [42], the two researchers who modelled the skull as a
poroelastic shell (see Table 1).

6.2 Pressure Solution

We �rst present Cryer's solution for pore pressure (mode 1). Throughout this re-
port we make an assumption common in poroelastic modelling - that of incompressible
constituents; we assume that the solid skeleton and interstitial �uid are both incom-
pressible. The implications of this assumption will be discussed later in the thesis.

We can now proceed by using our �rst set of boundary conditions to solve for C1

(see Equation 1, p = 0 when R = R0) [43]:

0 = C1
sinh

√
R2

0s/c

R0

− 3α

S
Ã1(s) (39)

C1 =
3α

S
Ã1(s)

(
R0

sinh
√
R2

0s/c

)
(40)
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We can now substitute Equation 40 into Equation 38 to �nd our pressure solution in
the s-plane:

p̃ =
3α

S
Ã1(s)

(
R0 sinh

√
R2s/c

R sinh
√
R2

0s/c

)
− 3α

S
Ã1(s) (41)

p̃ = −3α

S
Ã1(s)

(
1−

R0 sinh
√
R2s/c

R sinh
√
R2

0s/c

)
(42)

To remove the integration constant A1 we recall our radial stress solution (Equation
31), noting that as before A2 must equal 0 for stress to be bounded at R = 0. We
substitute in our incomplete pressure solution (Equation 42) and integrate [43]:

σ̃RR = −4η
1

R3

∫
R2p̃(R, t)dR +

2G(1 + v)

1− 2v
Ã1(s) (43)

= −4η
1

R3

∫
3αR2

S
Ã1(s)

(
1−

R0 sinh
√
R2s/c

R sinh
√
R2

0s/c
dR

)
+

2G(1 + v)

1− 2v
Ã1(s) (44)

=

[
− 24η2(1− v)

S(1− 2v)

R∗
√
s∗ cosh(R∗

√
s∗)− sinh(R∗

√
s∗)

R∗3s∗ sinh
√
s∗

(45)

+
8η2(1− v) + 2GS(1 + v)

S(1− 2v)

]
Ã1(s) (46)

Where complex frequency, s, and radius, R, have been made dimensionless:

s∗ =
R2

0s

c
R∗ =

R

R0

(47)

We can now begin to apply our boundary condition that σRR = −P0H(t − 0) when
R = R0 (Equation 1). Note that we are not substituting in radial stress in the time
domain but instead the Laplace transformed equivalent, σ̃RR. As such we must also �nd
the Laplace transform of −P0H(t−0), which is just −P0/s as the Laplace transform of
this variant of the Heaviside step function is 1/s [43]. Using this substitution we �nd
[43]:

sÃ1(s) =
P0S(1− 2v)(vu − v)s∗ sinh

√
s∗

4η2(1− v)D(s∗)
(48)

Where we have eliminated the shear modulus from our equation using the relation:

G =
2η2(1− v)(1− vu)

S(vu − v)
(49)

And for shorthand we introduce D(s∗):

D(s∗) = 6(vu − v)
√
s∗ cosh

√
s∗ − [6(vu − v) + (1− v)(1 + vu)s

∗] sinh
√
s∗ (50)
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We can now substitute in our result for Ã1(s) (Equation 48) into our incomplete pressure
solution (Equation 42) to �nd our Laplace transformed pressure solution [43]:

sp̃

P0

=
3(vu − v)s∗

2ηD(s∗)R∗

[
sinh(R∗

√
s∗ −R∗ sinh

√
s∗)
]

(51)

Recall that we are interested in the special case of incompressible constituents, for which
the solid skeleton and interstitial �uid are assumed to be incompressible. Mathemati-
cally this implies that vu = 1/2 and η = (1− 2v)/2(1− v). When these conditions are
imposed, Equation 51 reduces to Equation 52 [37].

sp̃

P0

=
s∗
[
sinh(R∗

√
s∗)−R∗ sinh

√
s∗
]

R∗
[
4η
√
s∗ cosh

√
s∗ − (s∗ + 4η) sinh

√
s∗
] (52)

To �nd the solution to Equation 52 in the time domain we must preform an inverse
Laplace transform. We note that Equation 52 is a ratio of two analytic function,
meaning it has the form:

f̃s = h(s)/g(s) (53)

This means we can apply a variant of the Cauchy residue theorem to return to the time
domain.

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
f̃(s)estds =

1

2πi

∮
C

h(s)

g(s)
estds =

n∑
i=1

h(si)

g′(si)
esit (54)

Where the poles si, i = 1, 2, ...n are found at the roots of the denominator of g(s). In
our equation the roots of the denominator can be found from the function D(s∗), which
we set equal to zero [43]:

tanh
√
sn =

6(vu − v)
√
sn

6(vu) + (1− v)(1 + vu)sn
(55)

From the Cauchy integral theorem (Equation 54) we are then able to �nd the inverse
Laplace transform by summing the residues at the poles [43]:

p(R, t)

P0

=
∞∑
n=1

18(vu − v)2

ηE(sn)

[
sinh(R∗

√
sn)

R∗ sinh
√
sn

]
esnt

∗
(56)

Where for convenience, we de�ne:

E(sn) = −(1− v)2(1 + vu)
2sn − 18(1 + v)(vu − v)(1− vu) (57)

And introduce dimensionless time:

t∗ =
ct

R2
0

(58)
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As sn ≥ 0 we know that there is an imaginary argument for our hyperbolic functions
[43]. Knowing that:

sinh ix = i sinx cosh ix cosx (59)

We are able to remove the imaginary components from cosh and sinh. As a result sn is
replaced with −xn. We �nd [43]:

p(R, t)

P0

=
∞∑
n=1

18(vu − v)2

ηE(xn)

[
sin(R∗

√
xn)

R∗ sin
√
xn

]
e−xnt

∗
(60)

Where:
E(xn) = (1− v)2(1 + vu)

2xn − 18(1 + v)(vu − v)(1− vu) (61)

And now:

0 =
6(vu − v)

√
xn

6(vu − v)− 1(1− v)(1 + vu)xu
− tan

√
x (62)

For the previously discussed impressible constituents case we �nd [43]:

p(R, t)

P0

=
∞∑
n=1

4(1− v)(1− 2v)
[
sin(R∗

√
xn)−R∗ sin

√
xn
]

[(1− v)2xn − 2(1 + v)(1− v)]R∗ sin
√
xn

e−xnt
∗

(63)

And:

0 =
2(1− 2v)

√
xn

2(1− 2v)− (1− v)xn
− tan

√
xn (64)

6.3 Displacement Solution

Recall the previously derived solution for displacement (Equation 30), restated here:

uR(R, t) =
η

G

1

R2

∫
R2p(R, t)dR + A1(t)R +

A2(t)

R2
(65)

We preform the Laplace transform to �nd [43]:

ũR(R, s) =
η

G

1

R2

∫
R2p̃(R, s)dR + Ã1(s)R +

Ã2(s)

R2
(66)

We know that Ã2 = 0 and Ã1 has been found to be (Equation 48):

sÃ1(s) =
P0S(1− 2v)(vu − v)s∗ sinh

√
s∗

4η2(1− v)D(s∗)
(67)

And p̃ has been previously found to be (Equation 42):

p̃ = −3α

S
Ã1(s)

(
1−

R0 sinh
√
R2s/c

R sinh
√
R2

0s/c

)
(68)
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We are now able to solve Equation 65 by making the appropriate substitutions to �nd:

sũR
uR(R0,∞)

= R∗ − 3(vu − v)

(1− 2v)D(s∗)R∗2

{
2(1− v)R∗3

√
s∗ cosh

√
s∗

− [2(1− 2v) + (1− v)s∗]R∗3 sinh
√
s∗

+ (1 + v)
[
R∗
√
s∗ cosh(R∗

√
s∗)− sinh(R∗

√
s∗)
]} (69)

Where:

uR(R0,∞) = −P0R0(1− 2v)

2G(1 + v)
(70)

By applying the Cauchy residue theorem Cheng �nds the solution in the time domain
[43]:

ũR
uR(R0,∞)

= R∗ −
∞∑
n=1

12(1 + v)(vu − v)

(1− 2v)E(xn)R∗2xn sin
√
xn

×
{

3(vu − v) [sin(R∗
√
xn)−R∗

√
xn cos(R∗

√
xn)]

+ (1 + v)(1− 2v)R∗3xn sin
√
xn

}
e−xnt

∗

(71)

Under the assumption of incompressible constituents, this reduces to:

ũR
uR(R0,∞)

= R∗ −
∞∑
n=1

4(1 + v)(1− 2v)

[(1− v)2xn − 2(1 + v)(1− 2v)]R∗2xn sin
√
xn

× [sin(R∗
√
xn)−R∗

√
xn cos(R∗

√
xn)] e−xnt

∗

(72)

7 Loading by Pore Pressure

7.1 Pressure Solution

We begin with our previously solved ordinary di�erential equation for pressure in the
complex frequency domain (Equation 38). It is restated below to improve readability.

p̃ = C1

sinh
√
R2s/c

R
+ C2

cosh
√
R2s/c

R
− 3α

S
Ã1(s) (73)

C2 must still remain 0 so that the solution is bounded. We apply our new boundary
conditions (Equation 3) and solve.

P0 = C1
sinh

√
R2

0s/c

R0

− 3α

S
Ã1(s) (74)

C1 =

(
P0 +

3α

S
Ã1(s)

)
R0

sinh
√
R2

0s/c
(75)
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We can now substitute in our result for C1 into Equation 73 to �nd that:

p̃ =
3α

S
Ã1(s)

(
R0 sinh

√
R2s/c

R sinh
√
R2

0s/c
− 1

)
+ P0

R0 sinh
√
R2s/c

R sinh
√
R2

0s/c
(76)

As when deriving the solution for the previous loading mode we take the integrated
solution for stress and apply our Laplace transform boundary conditions for stress and
radius to �nd:

σ̃RR =

[
−24η2(1− v)

S(1− 2v)

R∗
√
s∗ cosh(R∗

√
s∗)− sinh(R∗

√
s∗)

R∗3s∗ sinh
√
s∗

(77)

+
8η2(1− v) + 2GS(1 + v)

S(1− 2v)

]
Ã1(s) (78)

0 =

[
−24η2(1− v)

S(1− 2v)

√
s∗ cosh

√
s∗ − sinh

√
s∗

s∗ sinh
√
s∗

(79)

+
8η2(1− v) + 2GS(1 + v)

S(1− 2v)

]
Ã1(s) (80)

Ã1(s) = 0 (81)

We can now eliminate Ã1(s) from our incomplete solution (Equation 76):

sp̃

P0

=
R0 sinh

√
R2s/c

R sinh
√
R2

0s/c
(82)

Where the consolidation coe�cient can be used to tidy up our result:

c =
κ

S
=

κG(vu − v)

2η2(1− v)(1− vu)
(83)

And in the limiting case of incompressible constituents the consolidation coe�cient
reduces to:

c =
κG(1− v)

(1− 2v)
(84)

We replace all variables with previously de�ned dimensionless alternatives:

p̃

P0

=
sinh
√
R∗2s∗

sR∗ sinh
√
s∗

(85)

Same as before we want to eliminate our hyperbolic functions using Equation 59:

p̃

P0

=
sin
√
R∗2xn

xnR∗ sin
√
xn

(86)
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Our Laplace transformed pore pressure solution can once again be expressed as the
ratio of two analytic functions (f̃s = h(s)/g(s)). We can use Equation 54 to return to
the time domain as g(s) once agin contains zeroes at si, i = 1, 2...n. In our case we �nd:

h(s) = sin
√
R∗2xn (87)

and:
g(s) = xnR

∗ sin
√
xn (88)

where the derivative of g(s) is:

g′(s) = R∗ sin
√
xn +

1

2
R∗
√
xn cos

√
xn (89)

Ultimately this means we are able to solve for pressure using Equation 90:

p(R, t)

P0

= 1 +
∞∑
n=1

sin
√
R∗2xn

R∗ sin
√
xn + 1

2
R∗
√
xn cosh

√
xn
e−xnt (90)

Where xn is the roots of g(s):
0 = xnR

∗ sin
√
xn (91)

7.2 Displacement

We recall our Laplace transformed solution for strain (Equation 65), knowing that under
these boundary conditions Ã1 = Ã2 = 0:

ũR(R, s) =
η

G

1

R2

∫
R2p̃(R, t)dR (92)

Where p̃ is:

p̃ =
P0R0 sinh

√
R2s/c

sR sinh
√
R2

0s/c
(93)

We solve the integration to �nd:

sũR =
3cnP0s

[√
R2s/c cosh

√
R2s/c− sinh

√
R2s/c

]
R2s sinh

√
R2

0s/c
(94)

Where we have tripled our solution to normalise it. We them make our equation
dimensionless:

ũR
uR(R0,∞)

=
3
[√

R∗2s∗ cosh
√
R∗2s∗ − sinh

√
R∗2s∗

]
R∗2s∗2 sinh

√
s∗

(95)

Where now uR becomes:

uR(R0,∞) =
ηP0R0

G
(96)
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And:

η =
α(1− 2v)

2(1− v)
(97)

We remove the complex component of the argument then apply our equation for the
inverse Laplace transform (Equation 54) to �nd:

h(xn) = 3
[√

R∗2xn cos
√
R∗2xn − sin

√
R∗2xn

]
(98)

and:
g(xn) = R∗2xn

2 sin
√
xn (99)

where the derivative of g(s) is:

g′(xn) =
1

2
R2xn(4 sin

√
xn +

√
xn cos

√
xn) (100)

Ultimately this means that the analytical displacement solution under osmotic loading
conditions is:

uR
uR(R0,∞)

= R∗ +
∞∑
n=1

6
[√

R∗2xn cos
√
R∗2xn − sin

√
R∗2xn

]
R2xn(4 sin

√
xn +

√
xn cos

√
xn)

e−xnt (101)

7.3 Loading by Fluid Pressure

The solution under �uid pressure loading (mode 3) is merely a superposition of both
previous loading modes. As such while not explicitly stated for brevity, the solution
for pore pressure is the sum of Equation 63 and Equation 90, while the displacement
solution is the sum of Equation 69 and Equation 101.

8 Results and Discussion

8.1 Numerical Inverse Laplace Transform

We have derived Laplace transformed solutions for pore pressure and displacement
when loaded by direct stress or pore pressure (Equations 52, 69, 85 and 95) and have
subsequently used the Cauchy residue theorem to convert these solutions to the time
domain. For the purpose of validation we also choose to numerically invert our Laplace
transformed solutions.

Abate and Whitt provide a comprehensive review of popular numerical methods for
the inverse Laplace transform [54], based on this we opt to use Talbot's method [55] as
it is 1.5 times more e�cient that the Gaver-Stehfest one-dimensional algorithm and re-
mains e�cient under multiple use cases [54]. The MATLAB script for Talbot's method
formulated under Abate andWhitt's uni�ed framework [54] is provided by McClure [56].
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As an example the MATLAB code for how to invert the complex frequency solution to
pressure in Cryer's problem (Equation 52) is shown below:

Listing 1: MATLAB code for the numerical inverse Laplace transform for the pressure
solution of Cryer's problem using Talbot's method.

1 i = 1;
2 n = 100; %the number of radial steps
3 for t=[0.001,0.01,0.1,0.2,0.3,1] %dimensionless times (t∗)
4 i=i+1;
5 for j=0:1:n %evaluate along length of the radius
6 R=j/n; %calculate dimensionless radius (R∗)
7 f_s = @(s) (s*(sinh(R*sqrt(s))−R*sinh(sqrt(s))))

/(s*R*(4*n*sqrt(s)*cosh(sqrt(s))−(s+4*n)*sinh
(sqrt(s))));

8 cryer(j+1,i) = talbot_inversion(f_s, t); %
Talbot's method script

9 end
10 end

8.2 Analytical Inverse Laplace Transform

A root �nding algorithm written in MATLAB based on the bisection method is used to
�nd the roots of g(s) (Equations 64 and 91) [57]. The algorithm �nds roots by detecting
local sign changes within a restricted range of the whole function (within a window):

Listing 2: MATLAB root �nder.

1 g_s = @(x) −x*sin(sqrt(−x)); % the function g(s)
2 b=10; %the window size. Larger numbers are faster but some

roots may be skipped.
3 b_max=10000; %search for roots up until b_max. This is a

truncation of an infinite series, larger numbers are more
accurate but take longer.

4 for lb=0:b:b_max %lb=lower bound of window for algorithm
5 ub=lb+b; %ub=upper bound of window for algorithm
6 all_roots(lb/b+1)=bisection(g_s,lb,ub);
7 end

This simple code is su�cient in �nding the roots of g(s) under osmotic boundary con-
ditions. The function, and the identi�ed roots, are plotted in Figure 2.

The bisection method (and most root �nding algorithms) search for roots in a function
by checking for a sign inversion in the output of the function [58]. However, sign inver-
sions do not just occur about roots, they also occur in asymptotic functions. To help
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Figure 2: Roots of the function g(s) under osmotic loading boundary conditions (Equa-
tion 91). The standard bisection MATLAB root �nder is su�cient.

visualise this we plot g(s) as derived from Cryer's problem (Equation 64 in Figure 3).

As mentioned in Figure 3 the MATLAB script erroneously detects asymptotes as roots.
We modify our script to extract only the roots, ignoring the sign inversions occurring
at asymptotes. We do this by looping through a vector of all roots (true and false),
checking that the result of the function g(s) ≈ 0 while the asymptotic false roots by
de�nition tend to in�nity.

Listing 3: Corrected MATLAB root �nder.

1 v=0.25; %poisson's ratio
2 g_s = @(x) (2*(1−2*v)*sqrt(x))/(2*(1−2*v)−(1−v)*x)−tan(sqrt(x));
3 b=10;
4 b_max=10000;
5 for lb=0:b:b_max
6 ub=lb+b;
7 all_roots(lb/b+1)=bisection(g_s,lb,ub);
8 x=all_roots(lb/b+1);
9 if −1<(2*(1−2*0.25)*sqrt(x))/(2*(1−2*0.25)−(1−0.25)*x)−

tan(sqrt(x)) && (2*(1−2*0.25)*sqrt(x))/(2*(1−2*0.25)
−(1−0.25)*x)−tan(sqrt(x))<1 %check if −1 < g(s) < 1

10 true_roots(lb/b+1)=x;
11 else

25



Figure 3: The function y = 2(1−2v)
√
x

2(1−2v)−(1−v)xn−tan
√
x (Equation 64). We use the bisection

method to identify the roots. Some roots are correctly identi�ed (o), while others are
incorrectly identi�ed occurring at asymptotes (x).

12 false_roots(lb/b+1)=x;
13 end
14 end

After �nding the correct roots it is trivial to solve our pressure solution (Equation 63).

Listing 4: MATLAB.

1 i = 1;
2 n = 100; %the number of radial steps
3 for t=[0.001,0.01,0.1,0.2,0.3,1] %dimensionless times (t∗)
4 i=i+1;
5 for j=0:1:n %evaluate along length of the

radius
6 R=j/n; %calculate dimensionless radius (R∗)
7 for k=1:length(true_roots) %loop through

every root
8 cryer_sum(k)=(4*(1−v)*(1−2*v)*(sin(R*

sqrt(true_roots(k)))−R*sin(sqrt(
true_roots(k)))))/(((1−v)^2*
true_roots(k)−2*(1+v)*(1−2*v))*R*sin(
sqrt(true_roots(k))))*exp(−true_roots
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(k)*t);
9 end
10 cryer_pressure(j+1,i)=sum(cryer_sum); %

summation
11 end
12 end

8.3 Finite Element Simulation

As one �nal form of validation, a computational simulation of Cryer's problem was cre-
ated in ABAQUS. Unfortunately, a simulation of the second loading mode was unable
to be prepared as ABAQUS does not allow for a stress of zero to be applied on the
solid skeleton.

An axisymmetric model of a spherical ball was created and meshed using CAX4P linear
elements. Material parameters used for this simulation are not stated in this report as
ultimately all results were made dimensionless using the previously de�ned values for
R∗ and t∗ (see Equations 47 and 58).

Boundary value problems for which loading is instantaneous often have large gradi-
ents at the instant of loading, and as such require particularly �ne time stepping about
this point. The optimum value for this time step, ∆t, has been derived by Vermeer and
Verruijt [59]:

∆t ≥ γw
6Eκ

(∆h)2 (102)

Where γw is the speci�c weight of the interstitial �uid, E is the Young's modulus of
the poroelastic material, κ is permeability and ∆h is the element size at this boundary,
determined with a convergence analysis as show below. Using this relationship we �nd
the appropriate time stepping for the transient soil analysis.

Mesh convergence was determined by plotting the peak pore pressure recorded in the
sphere when R = 0 and ν = 0.25. Cryer's analytical solution for pore pressure, Equa-
tion 63, predicts a pore increase of just over 1.3 times the applied load due to the
Mandel-Cryer e�ect. This e�ect will be discussed later in the report, for now note
from Figure 4 how as the number of elements increase the computational value ap-
proaches the analytical value. Although convergence is reached around 500 elements,
all simulations in this report were preformed at 1000 elements.

8.4 Pore Pressure

We begin by plotting Cryer's solution for pore pressure as a function of radius and time
with the assumption of incompressible constituents where ν = 0.25 (Equation 63). As
previously mentioned this is a well established result originally derived in 1963 [37].
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Analytical

Figure 4: Peak pressure at the centre of a poroelastic sphere undergoing consolidation
through direct stress loading as simulated with ABAQUS. The pressure peaks above the
applied load due to the Mandel-Cryer e�ect. Consolidation of the computational and
analytical pore pressure is reached around 500 elements, although all future ABAQUS
simulations are run using 1000 elements.

Although not the objective of this thesis, we plot Cryer's solution to validate our cho-
sen numerical method of �nding the inverse of Laplace transformed functions (Talbot's
method [55]), our converged ABAQUS simulation and the underlying analytical MAT-
LAB code itself.

From Figure 5 we can clearly observe that the analytical, numerical and computa-
tional results are all in good agreement. Note however that Talbot's numerical Laplace
inversion begins to become unstable for smaller times (e.g. when t∗ = 0.001), leading
to a small perturbation in the expected results. The unconditional stability of most
numerical methods is one reason why analytical solutions are often preferred.

Figure 5 also shows that pore pressure is expected to rise above the applied load,
particularly near the centre of the sphere - this is due to the Mandel-Cryer e�ect. To
better visualise this phenomenon, in Figure 6 pore pressure at the centre of the sphere
is plotted a function of time.

The Mandel-Cryer e�ect can be explained by considering �uid drainage from the poroe-
lastic skeleton. The instant we start loading the sphere the pore pressure is equal in
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Figure 5: Pore pressure in a consolidating sphere as a function of radius and time
under Cryer's boundary conditions where ν = 0.25. There is good agreement between
analytical, numerical and computational results, although there is some slight instability
using the numerical inverse Laplace transform for small values of dimensionless time.

magnitude to the applied stress (recall from Cryer's boundary conditions that −σRR =
P0H(t − 0)). However, at p = 0 as R = R0 the �uid is able to freely drain from
the surface of the consolidating sphere. This dissipation in pore pressure means that
shortly after loading, the sphere e�ectively becomes an inhomogeneous material, with
a more compliant draining outer shell and a sti�er non-draining core [43]. This causes
stress to distribute non-uniformly along the radius of the consolidating sphere, causing
a comparatively higher pore pressure at the centre of the sphere. The pore pressure
will eventually dissipate as t∗ → 1, which is also demonstrated in Figure 6.

Note also that the Mandel-Cryer e�ect is more pronounced as ν → 0. This is be-
cause Poisson's ratio is the ratio of transverse strain to axial strain. This means that
for lower values of ν there is more stain radially than there is tangentially. From Hooke's
law we know that stress is proportional to stain [60], therefore we know that lower Pois-
son's ratios must result in more radial stress, consequently increasing the severity of
the Mandel-Cryer e�ect. This relationship has even been found to be even more severe
for materials with negative Poisson's ratios [61].

Having veri�ed that our three separate methods of simulating poroelastic consolida-
tion are valid for Cryer's boundary conditions we move to plotting our derived pore
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Figure 6: Pore pressure at the centre of a consolidating sphere subjected to Cryer's
boundary conditions. The pore pressure peaks above the applied stress due to the
Mandel-Cryer e�ect, with e�ect being more severe as ν → 0. The Mandel-Cryer e�ect
occurs due to �uid drainage at the surface of the sphere creating a more compliant
material, resulting in increased loading on the relatively sti�er core.

pressure solution under osmotic boundary conditions (Equation 85 in the complex fre-
quency domain and Equation 90 in the time domain).

Unfortunately, as previously mentioned, ABAQUS is unable to simulate this loading
mode as stress cannot be set to a value of zero. Nevertheless Figure 7 demonstrates a
good agreement between analytical and numerical results.

From Figure 7 it is immediately obvious that there is no Mandel-Cryer e�ect under
these boundary conditions. This is expected, the Mandel-Cryer e�ect occurs due to
drainage at the surface of the sphere, but now that p = P0H(t− 0) drainage is unable
to occur. Instead as t∗ → 1 the pore pressure across the entire sphere equalises at P0.

This solution is actually nearly identical to the di�usion equation, an observation that
can be easily veri�ed by looking back at our pressure solution before the Laplace trans-
form (Equation 35). With the bene�t of hindsight we know that A1 = 0, eliminating
the right hand side of the equation entirely and leaving only the di�usion equation,
with the consolidation coe�cient replacing di�usivity.
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Figure 7: Pore pressure in a consolidating sphere as a function of radius and time under
osmotic boundary conditions. There is no dependence on Poisson's ratio. This results
is identical to the solution to the di�usion equation.

Viewed this way the solution of pore pressure under mode 2 loading can be described
by thinking of pore pressure as analogous to a concentrated solute, di�using down a
concentration gradient into the sphere, gradually raising the pressure inside until equi-
librium is achieved.

As one �nal observation from Figure 7 note that under this loading mode the result is
not dependent on Poisson's ratio, which is con�rmed by looking at Equation 90. This
result is expected, Poisons ratio is irrelevant as we are not concerned with stress being
loaded on the solid skeleton and the �uid is assumed to be incompressible.

We continue as before by plotting the pore pressure at the centre of the sphere as
a function of time (see Figure 8). Unlike Cryer's result in which the pore pressure
change is instantaneous, the osmotic loading condition has a slight lag before any pore
pressure change is observed at the centre of the sphere. This phenomenon can be un-
derstood by returning to the di�usion analogy - time is required before the di�using
pore pressure can reach the centre and cause an increase in pore pressure.

As previously mentioned, the �nal loading mode (that of loading through applied �uid
pressure) is the superposition of both previous loading modes. This result is plotted in
Figure 9.
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Figure 8: Pore pressure at the centre of a consolidating sphere subjected to osmotic
boundary conditions.

Figure 9: Analytical solution of pore pressure at the center of a consolidating sphere
subjected to �uid pressure loading boundary conditions with ν = 0.25.
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At both the instant of loading and when t∗ = 1 pressure across the radius of the
sphere is equal to P0. The increase and subsequent decrease in pore pressure at the
centre of the sphere is most likely due to stress applied directly on the solid skeleton
being transferred to the surrounding �uid. This higher pressure �uid now needs time to
di�use outwards and equalize, this process is slowest at the centre of the sphere where
di�usion distances are greatest.

8.5 Displacement

Understanding how a consolidating sphere deforms as a function of time is critical in
formulating an alternative to AFM. As previously mentioned the surface settlement of a
cell in an osmotic medium can be �t against the previously derived governing equation
to calculate certain mechanical properties. In this section a positive displacement is
treated as the sphere expanding outwards while conversely a negative displacement is
the sphere contracting.

We begin by plotting Cryer's solution for displacement with incompressible constituents
and ν = 0.25 in Figure 10. Notice immediately that our numerical and computational
solutions match Cryer's analytical solution, validating our method.

Figure 10: Displacement in a consolidating sphere loaded with Cryer's boundary condti-
tions with ν = 0.25.
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Displacements in Cryer's mode are all negative. Intuitively this is correct, strain is
applied directly to the solid skeleton of the poroelastic sphere and when a linear elastic
solid is loaded we expect it to compress.

Displacement itself is �xed at zero as de�ned by Cryer's boundary condition that uR = 0
at R = 0. Displacement is highest at the surface of the sphere directly where the load is
applied. In fact, when t∗ = 1 there is an exact linear relationship between displacement
and radial distance.

Figure 11: Displacement in a consolidating sphere under Mode 2 loading conditions.

When we plot displacement as a function of time and radius for the osmotic load-
ing condition we now notice that the poroelastic sphere begins swelling (see Figure 11).
This may seem unintuitive at �rst until you consider that under this mode loading is
applied as pore pressure, which di�uses in and acts internally, pushing outwards on the
solid skeleton.

Notice from Figure 11 that our results almost mirrors Figure 10 re�ected in the x-
axis - this means that a superposition of both loading modes results in no deformation.
This initially confusing result is explained as follows. As we have made the assumption
of incompressible constituents the soil does not immediately deform upon compression,
and instead a pore pressure rise proportional to the applied stress will be produced
based on the Skempton e�ect. This pore pressure rise acts in opposition to the applied
pressure on the surface, cancelling it out and resulting in no net deformation.
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The Skempton e�ect describes how the pore pressure in a poroelastic material increases
(∆p) when said material is subjected to a compressive stress (∆P ) [43]:

∆p = B∆P (103)

Where B is the Skempton pore pressure coe�cient. Typically 0 ≤ B ≤ 1 although
B > 1 is also possible [43]. However under the assumption of incompressible con-
stituents all load must be transferred into pore pressure and so B = 1.

The assumption of incompressible constituents is made frequently in poroelasticity,
Cryer's original work made this assumption [37], as do Mason [41] and Nowinski and
Davis [42]. In geomechanical analysis this assumption is often safe to make, however
for cellular modelling the assumption is more tenuous. For example, it is safe to model
cytosol as an incompressible Newtonian �uid [62], however there is no evidence proving
it appropriate to model the solid skeleton of a cell in the same way. Nevertheless this
assumption was made to reduce the number of mechanical parameters needed to char-
acterise a cell. A larger number of parameters in the governing equation requires an
higher degree polynomial to be used for curve �tting, which could lead to good �ts that
may still result in incorrectly determined parameters. Ideally any method of sti�ness
quanti�cation should determine only a limited number of parameters. Unfortunately
without more poroelastic cellular data available it is impossible to determine whether
this assumption is safe to make.

Moving on, internal pressure and deformation of a consolidating cell is di�cult to ob-
serve, however surface settlement of a swelling or shrinking cell can be easily captured
with any microscope. As such we plot the surface deformation of a sphere swelling due
to an osmotic pressure in Figure 12.

Surface deformation data can be matched against this function using curve �tting al-
gorithms to calculate the cell's mechanical properties that ultimately de�ne surface
consolidation under osmotic loading - namely Poisson's ratio, shear modulus and per-
meability. Experimentally derived conversions exist for calculating the elastic modulus,
bulk modulus and other parameters from these values if desired.

At present the reliance on permeability severely limits the viability of poroelastically
modelling cells. Permeability data of various biological cells is thoroughly lacking and
greater questions about the permeability of cells remains unanswered. Does perme-
ability vary greatly on a cell by cell basis or can an assumed value be safely used? Is
permeability homogeneous or inhomogeneous across the cell? Does the presence of cer-
tain organells signi�cantly a�ect accurate measurements? A greater body of research
on cell permeability is needed to answer these questions, to this end a streamlined way
of accurately measuring cell permeability is required.
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Figure 12: Displacement at the surface of a consolidating sphere loaded with osmotic
boundary conditions.

Biot and Willis propose a few ways in which permeability (and other poroelastic co-
e�cients) can be measured [63]. Unfortunately, methods such as the jacketed and
unjacketed compression test are unsuited to micron sized cells. Instead two alternative
techniques for determining permeability are presented:

Darcy's law is an equation relating �ow rate through a permeable medium (Q) to
permeability. Through a chamber of cross sectional area A there �ows a �uid with
viscosity µ. As there is a pressure drop ∆P over its length L we �nd permeability equal
to [64]:

κ = − QµL
A∆P

(104)

Despite originally being formulated in 1856 [65] Darcy's law is still regularly used to
determine the permeability of rocks [66], �bre reinforced composites [67], bone [68] and
even tissue engineered sca�olds [69].

Although the apparatus needed to measure permeability using Darcy's law is simple
it requires a bulk quantity of poroelastic material to work - the volume of the testing
chamber must be packed with cells. Producing such a large quantity of cells would be
challenging, and even though the dimensions of the chamber can be scaled down to
micron size that cells themselves may deform under the �uid �ow.
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Furthermore the membrane of the cells may impart some resistance on the �ux of water,
causing the streamlines to preferentially pass around the cells rather that through them
as desired when measuring the permeability of the cytoplasm.

An alternative method of measuring permeability may be adapted from the work of
Chan et al. [70]. Their method, called �Poroelastic Relaxation Indentation�, is used to
assess the permeability of micron scale hydrogels through indentation to a �xed depth.
The load relaxation of the hydrogel is then recorded and used to determine various
mechanical properties.

The �nite element solution of the equation governing �Poroelastic Relaxation Inden-
tation� [71] has successfully been used by Moeendarbary et al. to characterise the
poroelastic properties of MDCK, HeLa and HT1080 cells [34], proving the feasibility of
such a technique.

Unfortunately such a method is reliant on micro-indentation, and as such has the exact
same limitations as AFM which motivated this report. However it may be necessary
to use such techniques just to achieve a reference value for permeability, following on
from which the osmotic deformation method presented in this report may be used.

9 Conclusion

While AFM remains the most e�ective way to assess local variances in sti�ness within
an inhomogenous tissue, often bulk assessment of cellular sti�ness is desired. This
thesis outlined six key criteria for any possible alternative to AFM, which we restate
with evidence that the proposed method has achieved each criterion. The method must:

1. be capable of quantifying cellular mechanical properties - an equation
describing cell swelling or shrinkage as determined by shear modulus, Poisson's
ratio and permeability has been derived.

2. require equipment typically found in most labs - only a microscope, trypsin
and a hypoosmotic or hyperosmotic solution is required.

3. be quick - the speed of water �ux across the cell membrane can be controlled by
changing the osmotic pressure.

4. assess several cells in tandem - multiple swelling cells can be viewed and mea-
sured under the same microscope using existing software capable of cell tracking
(e.g. ImageJ).

5. not damage the cell - although in vitro veri�cation is needed, the process is
entirely reversible unless the threshold for osmotic shock is exceeded.
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6. not allow for cell adhesion - the cell has been trypsinized, preventing integrin
binding.

Although the derived analytical solution has been validated using numerical methods
and computational simulations, experimental validation has not been achieved. It is
entirely possible that the proposed method may not be a viable way to determine
cellular sti�ness. A series of question must be answered before the viability of the
method is ensured:

� Are trypsinised cells su�ciently spherical?

� Aquaporins are integral membrane proteins embedded in cellular membranes that
facilitate the transport of water [72]. Do they signi�cantly e�ect the predicted
�ux of water?

� A cell has been modelled as a singular poroelastic domain with the phospholipid
bilayer being a dimensionless partially permeable membrane. Does the solution
need to be expanded to a two layer problem with the membrane being mechani-
cally characterised independently?

� Does the membrane itself su�ciently impede the passage of water?

� Most obviously, does the predicted sti�ness match recorded values for cellular
sti�ness?

Should these questions be answered through rigours experimental validation, the pro-
posed method for quantifying cellular sti�ness may o�er a simple, low-cost alternative
to AFM.

Mechanotransduction itself is a nascent �eld of research that forms an essential part of
cellular biology. Unfortunately many cellular biologists have not had the opportunity
to consistently probe cellular sti�ness due to the prohibitive cost of AFM and other
technologies. This method will ultimately never replace AFM, but if experimentally
validated, it may o�er a reliable - and very accessible - alternative.
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